NOTE ON A VOLTERRA INTEGRO-DIFFERENTIAL EQUATION SYSTEM

DENNIS G. WEIS

ABSTRACT. This note concerns a type of nonlinear Volterra integrodifferential equation system which has only asymptotically zero solutions. It is a simple generalization of a one-dimensional result of J. J. Levin. It is a correction to another such note and gives a counterexample to that note,

In [1] Kemp discusses the integro-differential equation

(1)
$$x'(t) = -\int_0^t a(t-w)g(x(w))\,dw$$

where x maps $[0, \infty)$ into \mathbb{R}^n , g maps \mathbb{R}^n into \mathbb{R}^n and a maps $[0, \infty)$ into n by n matrices over R. Take the following as basic assumptions:

(a) $g \in C(\mathbb{R}^n)$, $x^T g(x) > 0$ for $x \neq 0$ (where x^T is the transpose of the *n* by 1 matrix *x*), there exists a scalar function $G \in C'(\mathbb{R}^n)$ such that *g* is the gradient of *G* and $G(x) \to \infty$ as $|x| \to \infty$;

(b) $a \in C[0, \infty)$, and $(-1)^k a^{(k)}(t)$ is a real symmetric positive semidefinite matrix for $0 \le t \le \infty$, k = 0, 1, 2, 3.

Under (a) and (b), Kemp states the following theorem about asymptotic behavior.

Theorem I. Any solution u(t) of (1) satisfies

(2)
$$\lim_{t \to \infty} u^{(j)}(t) = 0 \quad (j = 0, 1, 2)$$

provided that $a(t) \neq a(0)$.

However the system below is a counterexample to that theorem.

AMS (MOS) subject classifications (1970). Primary 45M05, 45J05; Secondary 45G99, 45D05.

Key words and phrases. Integro-differential equation, nonlinear Volterra equation, integral equation system, asymptotic behavior.

Copyright © 1974, American Mathematical Society

Received by the editors November 1, 1972 and, in revised form, September 26, 1973.

$$\begin{bmatrix} u_1'(t) \\ u_2'(t) \end{bmatrix} = -\int_0^t \begin{bmatrix} \exp(-(t-w)) & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_1(w) \\ u_2(w) \end{bmatrix} dw, \quad u_1(0) = 0; \quad u_2(0) = 1.$$

Kemp's result is an attempt at generalizing a one-dimensional theorem of J. J. Levin which is in [2]. In the one-dimensional argument the following result is important (Lemma 2 in [2]).

Lemma II. If (b) is satisfied and if $a(t) \neq a(0)$ then either -a'(t), a''(t) > 0 for $0 < t < \infty$ or there exists a $t_0 > 0$ such that -a'(t), a''(t) > 0 for $0 < t < t_0$ and $a(t) \equiv a(t_0) = a(\infty) > 0$ for $t_0 \le t < \infty$.

Levin uses this lemma to show that there is an S > 0 such that a''(t) > 0 for $0 \le t \le S$. The lemma, however, does not hold for the *n*-dimensional case. To generalize Levin's theorem we may use Lemma III.

Lemma III. If (b) is satisfied and if there is no nonzero $x \in \mathbb{R}^n$ such that $x^T a(t)x = x^T a(0)x$ for all t, $0 \le t < \infty$, then there exists an S > 0 such that a''(t) is positive definite for $0 < t \le S$.

With Lemma III all of Levin's arguments may be put through, with a little extra work, to give Theorem IV.

Theorem IV. If (a) and (b) hold and u(t) is any solution of (1), then u(t) satisfies (2) provided that there is no nonzero $x \in \mathbb{R}^n$ such that $x^T a(t)x = x^T a(0)x$ for all $t, 0 \le t < \infty$.

Proof of Lemma III. The function $x^T a(t)x$, $x \neq 0$, satisfies the lemma of Levin. Therefore for any $x \in \mathbb{R}^n$, $x \neq 0$, there exists t(x) such that $x^T a''(t)x > 0$ for 0 < t < t(x). Note that a''(t) is positive definite if and only if for all $x \in \mathbb{R}^n$, |x| = 1, $x^T a''(t)x > 0$.

For a contradiction proof assume that there exist a sequence x_n , $|x_n| = 1$, and a sequence t_n , $t_n > 0$ and $\lim t_n = 0$, such that $x_n^T a''(t_n) x_n = 0$. Without loss of generality assume $\lim x_n = y$ with |y| = 1. Choose T such that 0 < T < t(y) so that $y^T a''(T) y > 0$. $\lim x_n^T a''(T) x_n = y^T a''(T) y > 0$ implies there is some N such that for n > N, $x_n^T a''(T) x_n > 0$. $x_n^T a''(t) x_n$ is nonincreasing in t for t > 0 and any n (just look at its derivative); hence $x_n^T a''(T) x_n > 0$ for n > N implies $x_n^T a''(t) x_n > 0$ for 0 < t < T and n > N. Now if n is sufficiently big such that n > N and $0 < t_n < T$, we have two

contradictory statements: $x_n^T a''(t_n) x_n = 0$ and $x_n^T a''(t_n) x_n > 0$. Thus there is a contradiction and there must exist an S as described.

REFERENCES

1. R. R. D. Kemp, Remarks on systems of nonlinear Volterra equations, Proc. Amer. Math. Soc. 14 (1963), 961-962. MR 28 #438.

2. J. J. Levin, The asymptotic behavior of the solution of a Volterra equation, Proc. Amer. Soc. 14 (1963), 534-541. MR 27 #2824.

DEPARTMENT OF MATHEMATICS, ARIZONA STATE UNIVERSITY , TEMPE, ARIZONA 85281

 $\mathbf{216}$