NOTE ON A VOLTERRA INTEGRODIFFERENTIAL EQUATION SYSTEM

DENNIS G. WEIS

Abstract

This note concerns a type of nonlinear Volterra integrodifferential equation system which has only asymptotically zero solutions. It is a simple generalization of a one-dimensional result of J. J. Levin. It is a correction to another such note and gives a counterexample to that note,

In [1] Kemp discusses the integro-differential equation

$$
\begin{equation*}
x^{\prime}(t)=-\int_{0}^{t} a(t-w) g(x(w)) d w \tag{1}
\end{equation*}
$$

where x maps $[0, \infty)$ into R^{n}, g maps R^{n} into R^{n} and a maps $[0, \infty)$ into n by n matrices over R. Take the following as basic assumptions:
(a) $g \in C\left(R^{n}\right), x^{T} g(x)>0$ for $x \neq 0$ (where x^{T} is the transpose of the n by 1 matrix x), there exists a scalar function $G \in C^{\prime}\left(R^{n}\right)$ such that g is the gradient of G and $G(x) \rightarrow \infty$ as $|x| \rightarrow \infty$;
(b) $a \in C[0, \infty)$, and $(-1)^{k} a^{(k)}(t)$ is a real symmetric positive semidefinite matrix for $0<t<\infty, k=0,1,2,3$.

Under (a) and (b), Kemp states the following theorem about asymptotic behavior.

Theorem I. Any solution $u(t)$ of (1) satisfies

$$
\begin{equation*}
\lim _{t \rightarrow \infty} u^{(j)}(t)=0 \quad(j=0,1,2) \tag{2}
\end{equation*}
$$

provided that $a(t) \not \equiv a(0)$.

However the system below is a counterexample to that theorem.

Received by the editors November 1, 1972 and, in revised form, September 26, 1973.

AMS (MOS) subject classifications (1970). Primary 45M05, 45J05; Secondary 45G99, 45D05.

Key words and phrases. Integro-differential equation, nonlinear Volterra equation, integral equation system, asymptotic behavior.

Copyright © 1974, American Mathematical Society

$$
\left[\begin{array}{l}
u_{1}^{\prime}(t) \\
u_{2}^{\prime}(t)
\end{array}\right]=-\int_{0}^{t}\left[\begin{array}{cc}
\exp (-(t-w)) & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1}(w) \\
u_{2}(w)
\end{array}\right] d w, \quad u_{1}(0)=0 ; \quad u_{2}(0)=1
$$

Kemp's result is an attempt at generalizing a one-dimensional theorem of J. J. Levin which is in [2]. In the one-dimensional argument the following result is important (Lemma 2 in [2]).

Lemma II. If (b) is satisfied and if $a(t) \equiv \equiv a(0)$ then either $-a^{\prime}(t)$, $a^{\prime \prime}(t)>0$ for $0<t<\infty$ or there exists a $t_{0}>0$ such that $-a^{\prime}(t), a^{\prime \prime}(t)>0$ for $0<t<t_{0}$ and $a(t) \equiv a\left(t_{0}\right)=a(\infty)>0$ for $t_{0} \leq t<\infty$.

Levin uses this lemma to show that there is an $S>0$ such that $a^{\prime \prime}(t)>$ 0 for $0<t \leq S$. The lemma, however, does not hold for the n-dimensional case. To generalize Levin's theorem we may use Lemma III.

Lemma III. If (b) is satisfied and if there is no nonzero $x \in R^{n}$ such that $x^{T} a(t) x=x^{T} a(0) x$ for all $t, 0 \leq t<\infty$, then there exists an $S>0$ such that $a^{\prime \prime}(t)$ is positive definite for $0<t \leq S$.

With Lemma III all of Levin's arguments may be put through, with a little extra work, to give Theorem IV.

Theorem IV. If (a) and (b) hold and $u(t)$ is any solution of (1), then $u(t)$ satisfies (2) provided that there is no nonzero $x \in R^{n}$ such that $x^{T} a(t) x$ $=x^{T} a(0) x$ for all $t, 0 \leq t<\infty$.

Proof of Lemma III. The function $x^{T} a(t) x, x \neq 0$, satisfies the lemma of Levin. Therefore for any $x \in R^{n}, x \neq 0$, there exists $t(x)$ such that $x^{T} a^{\prime \prime}(t) x>0$ for $0<t<t(x)$. Note that $a^{\prime \prime}(t)$ is positive definite if and only if for all $x \in R^{n},|x|=1, x^{T} a^{\prime \prime}(t) x>0$.

For a contradiction proof assume that there exist a sequence $x_{n},\left|x_{n}\right|=$ 1 , and a sequence $t_{n}, t_{n}>0$ and $\lim t_{n}=0$, such that $x_{n}^{T} a^{\prime \prime}\left(t_{n}\right) x_{n}=0$. Without loss of generality assume $\lim x_{n}=y$ with $|y|=1$. Choose T such that $0<T<t(y)$ so that $y^{T} a^{\prime \prime}(T) y>0 . \operatorname{Lim} x_{n}^{T} a^{\prime \prime}(T) x_{n}=y^{T} a^{\prime \prime}(T) y>0$ implies there is some N such that for $n>N, x_{n}^{T} a^{\prime \prime}(T) x_{n}>0 . x_{n}^{T} a^{\prime \prime}(t) x_{n}$ is nonincreasing in t for $t>0$ and any n (just look at its derivative); hence $x_{n}^{T} a^{\prime \prime}(T) x_{n}>0$ for $n>N$ implies $x_{n}^{T} a^{\prime \prime}(t) x_{n}>0$ for $0<t<T$ and $n>N$. Now if n is sufficiently big such that $n>N$ and $0<t_{n}<T$, we have two
contradictory statements: $x_{n}^{T} a^{\prime \prime}\left(t_{n}\right) x_{n}=0$ and $x_{n}^{T} a^{\prime \prime}\left(t_{n}\right) x_{n}>0$. Thus there is a contradiction and there must exist an S as described.

REFERENCES

1. R. R. D. Kemp, Remarks on systems of nonlinear Volterra equations, Proc. Amer. Math. Soc. 14 (1963), 961-962. MR 28 \#438.
2. J. J. Levin, The asymptotic behavior of the solution of a Volterra equation, Proc. Amer. Soc. 14 (1963), 534-541. MR 27 \#2824.

DEPARTMENT OF MATHEMATICS, ARIZONA STATE UNIVERSITY, TEMPE, ARIZONA 85281

