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ON THE HOMOLOGY OF FINITE CYCLIC COVERINGS

OF HIGHER-DIMENSIONAL LINKS

D. W. SUMNERS1

ABSTRACT.  We produce an explicit formula for the betti numbers of

the /c-fold branched cyclic covering of a link, in terms of complex /cth roots

of unity which are also roots of the polynomial invariants of the link.   More

information is obtained when  k is a prime power.

I. Introduction.  For classical knots and links, there is a well-known for-

mula [2], [3], [8] for computing the 1-dimensional betti numbers of the /e-fold

branched cyclic covering space.   The formula is given in terms of complex

/eth roots of unity which are also roots of the polynomial invariants of the in-

finite cyclic covering space of the complement.   This paper gives a new

proof of these results, and extends them to a calculation of all the betti num-

bers for a higher-dimensional link.   The proof exploits a long exact sequence

[5] relating the homology of the infinite cyclic cover to that of the /e-fold un-

branched cyclic cover.

The formulas are particularly simple and interesting in the case of prime

power coverings (see Theorem 3 and Corollary 5).   Moreover, the method of

proof of Theorem 3 has turned out to be useful in the study of the monodromy

of plane algebraic curves [7].

II. Rational homology invariants.   An «-link of multiplicity p. denotes a

smooth oriented submanifold   Ln of Sn      homeomorphic to p disjoint copies

of 5".   If X denotes the complement of the link, then Alexander duality

gives us

tf.(X; Z) = pZ,

= ip- \)Z,

= z.

= n + 1,

= 0,

= 0. otherwise,

_
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where  aZ denotes the direct sum of a copies of Z.

The orientation of the manifold pair  (Sn+ , L") allows us to define the

homological linking number   (r, L") between 1-cycles r and the link L".

This determines a homomorphism

rr^tjd),       rh^<^*>

where  j(t) is the infinite cyclic multiplicative group on the generator  t. The

infinite cyclic covering space X of X is the regular covering space asso-

ciated with  Ker </>.   X  is an invariant of oriented link type.

Let  Z, Q and  C denote the integers, rationals and complex numbers.

Let A, r and m denote the integral, rational and complex group ring of /(/),

respectively.   We have  T = A ®z Q  and m Si F ®„ C and regard A C F

Cï  as subrings.   A  is a Noetherian unique factorization domain, and F and

f are principal ideal domains.   Since  /(:) acts on  X as the group of cover-

ing translations, we have that  H (X; Z) is a finitely-presented A-module for

all q, and likewise for Hq(X; Q) and Hq(X; C) over T and W.  The poly-

nomial invariants are the invariants of the T-structure of  H (X; Q).  Since F

is a PID, we have that H 0?; Q) »_ Fq © Tq where  F   is T-free and Tq is

r-torsion.   If A e I"1,  let F/X denote the cokernel of multiplication by A  on

T.   It is shown in [5] that in the range 22 > 2  or 22 = 1, /i. = 1  that

Fq = (p-l)F,     27=1,22+1,

= 0, otherwise,

and T   S TA« © ...© TA«     where \q eA,A*+1|A« in A, 1 < i<(mq-l).

Moreover, if  q > 1  then Xq.(l) = ±M;  and A°(i) = (t - l).   The rank of  F

together with the invariant factors  {\q\ ate a complete set of invariants for

the T-module  H (X; Q), hence are invariants of oriented link type.

Moreover, the T-structure of  H (X; Q) determines the W-structure of

H (X"; C) Sí H  (X; Q) ®    C.   That is, for  1 < q < n, the m-torsion summand

of  H (X; C) is  m/A? © ... © W/A*   ,  and the  W-rank of
<? q

Hq(X;C) = (p-l),     9=1,22+1,

= 0, otherwise.

The ¿-fold unbranched cyclic cover Xu,   of X  is the regular covering as-

sociated with the canonical epimorphism
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TtyiX)    -> Jk
\ -If

j\t)

where J denotes the finite cyclic multiplicative group of order k. The un-

branched cover has a unique completion, the associated /é-fold branched cy-

clic cover X;,  branched alone the link  L".   Let  k be fixed, and let a?  be
k p. i

the number of distinct  /eth roots of unity which are roots of À?.   Let  c   =
z q

1 .q, dq    and let  ß   = «-dimensional betti number of X".   We have the fol-
z=l       z *? k

lowing

Theorem 1.  n>2  or n = I,  p= 1.  Then

ßq = Cq + Cg-l> 2<q<n,

=  kifl-  l)+  Cj   +   1, fjr=l,

= ^-l)+Cn, 9 = 72+1,

= 1, 9=0.

Proof.  We have that  ß   = rank. (77  (X"; Q)) = rank^ (//  (X"; C)), so it
"« Q        1      k C       q      k' '

will suffice to compute the complex rank.   As in o], we have the short exact

sequence of chain complexes (over *P  and  C):

0 — C*(X; C)        ~    >C¿X; C) — C%(X"; C) — 0.
(zfe-D

This induces the long exact sequence of homology

(D • • • - riß; C) Stzll HqiX; O - H^; C) A • • • .

Let  Ker    and  Cok    denote the kernel and cokernel, respectively, of the map

it   - 1);  then the following is an exact sequence of C-vector spaces:

0 -+Ker   -»'« (X; C) (*   ~ H 77 (X; C) -. Cok   -. 0.
<l 1 1 q

Note that in the range  2 < q <n, Hq0(; C) is pure *P-torsion, so is a finite-

dimensional C-vector space, and hence  dimr (Ker  ) = dim    (Cok  ).   The long

exact sequence (1) decomposes into a number of short exact sequences

(2) 0-Cok,-//^; O-Ker^j-O.
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So dim,- H (X"; C) = dim _ Ker     , + dinv Cok  .
C      q      k C q-l C q

Note that the homomorphism  (t   - l) respects any ,P-splitting for

H (X; C).   It will therefore suffice in most instances to calculate the kernel

t k        \
and cokernel of (t    — 1) restricted to a single cyclic summand of the form

m/A.  A has a prime factorization in W  into powers of linear factors A =

u. (t - z .) i.   We can further decompose 'P/A  into the direct sum
; i

f/fc-z/1©.'.. ,

so focus attention on a prime-power summand *\!/(t — z .) J.   Since  (t   — 1) =

II. ~n (t - Ç) where  Ç,  is a primitive &th root of unity, we have the exact

sequence

0 _ Ker ̂ VU - z.f' {t ~ l] W(t - */' -» Cok _ 0

where

Ker Sí Cok Si C       if  z.  is a  yfeth  root of unity,

St 0       otherwise.

Hence  the   theorem is proved in the range 3 < q < n.   Since

Hn + 2(X; C) ^(p~ 1)W        and       0 — m  (t_z}2, W _    *C   -   0

is exact, then Cok   .,   ~ k(p - l)C.   So rank^ H   .,(X"; C) = ä(u - 1) + c  .
' 22+1 r C      n + I      fe' r «

Likewise   Ker.   gets contributions only from the W-torsion part of  HAX; C)

so rankr H (X"; C) = c9 + c..   In dimension 1, we have the following exact

sequence:

0^ [kip- Û + cJC— Hr(Xuk; C)^H0(X; O !*HQ(X;C)^ ....

Hence rankr H.(XU; C) - k(p. — l) + c    + 1.   This completes the proof of

Theorem 1.

Corollary 2.   Let X,   be the k-fold branched cyclic cover of X, and
k     _ ,

/2>2  or 22=1,  n= 1,  and ß   = q-dimensional betti number of X  .   Then

ßq =  Cq +  Cq-l> 2   < q < n,

= (k- l)(p- 1) + Cj, q= 1,

= (k - l)(p - l) + cn , q = 22 + 1,

= 1, q = 0, 22 + 2.
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Proof.  By excision,

//¿(X*. X"; C) = pC ,     i = 2, n + 2,

= 0, otherwise.

Just as in [5], we have that X,   is orientable, and the exact sequence of the

pair  (X^v X£) yields

0 - Hn + 2iXbk) ± Hn + 2ixl X¡¡) - 77n + 1(xp - 77„ + 1(x|) -* 0.

Moreover,  /    takes the orientation class onto the element  (1, 1, ••• , 1) in

C © • • • © C Si 77     AXb ; X"), so we have that
n+2      k        k

rankc77n   A\Xbk; Cl = rankc 77„ + ,(X£; C) - .(ft1- l)

= kip - l) + cn - ip - 1) = U - l) ip - l) + cn .

Likewise, it is shown in [5] that the following is a short exact sequence:

0 ^H2iX\, X»k) ± HxiX«k) -, HA\Xbk) ̂ 0.

Hence rankc 77  (x£) = rankc (Xp - p = kip - l)+cl +1 - p= ik-l)ip-l)+cv

Otherwise, HqiX°) S Hg(Xp, 2 < q < n.

The   previous analysis took place over  C,  and the algebraic fact that all

the polynomial invariants factored into linear factors in ¥  considerably sim-

plified the calculation.   It is possible to make a similar analysis in V, which

yields  considerably more information in the case of prime power coverings.

As before,  ß     is the cj-dimensional betti number of X  .

Theorem 3.  72 > 2  or n = 1,  p = 1   and  k = p , p a prime.    Then

ßq = ik- lKfi- l),      ?=!.«+ 1.

= 1, c7 = 0, 7z +

= 0 otherwise.

=   1, 9=0,77+2,

Proof. Following the proof of Theorem 1, the analysis over Y boils down

to looking at it — l) restricted to a cyclic summand Y/X. For the prime number

p, we have the prime factorization in Y :

itP -l)=it-D(tp-1 + tP^ + ...-+1)

where the second factor is the pth cyclotomic polynomial <f>  it).   Moreover, we

have the prime factorization [6,  p.  115]   itp ) = it - l)cb it/cp  2it) • • • <p    il>
P        p p
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,-l
where 0 v(t) = 1 + tpV~   + t2P1"1 + ... + Ap~l)pv    ,    Hence for v > 1  we

have  0     (1) > 2.  Now the rational polynomial invariants  \kq.(t)\, 1 < q <n,
P ^

have the property [5, Theorem 2.4] that A9(l) = ±1.   This means that \q(t)

and  (tp   - 1) are relatively prime, so the contribution to  H (X"; Q) from the
<?"   *'

F-torsion part of   H (X; Q) is trivial for  q > 1.

We are left with the case of a classical link, n = 1,  p> 2.   In this case,

we have  r/2(X"; Q) = r-,1% and

rfjix; ö) = ^1r©r/A}©---©r/A^i

Let cf be the greatest integer such that AMI) =0.   If Aj(l) ^  0, take  <f = 0.

Theorem 4.  22 = 1,  p > 2.  // ß     is the q-dimensional betti number of X,,

then  ßl=ß2 = (k- l)(p- l)+C   -kg..

Proof,  ß. = ß2  by Poincare duality, so it will suffice to compute  /S,.

As in [A], [5] we have the short exact sequence of chain complexes

0 -, Q(X; Q) Ü—Li C¿X; Q) - C*(X; Q) — 0

which induces the long exact sequence of homology

(t- 1)
0 - H2iX; Q) r-ü H2(X; ß) -. H2iX; Q) — tffX; 2)

(3)

^ U- i)Q

If X fibers over 5"  ,  then (3) is the Wang homology sequence of the fibration.

From (3) we obtain the short exact sequence

0— 'jß-^ifi-lte— £S — 0        SO    T2  =  (p-l)-£.

Hence in the notation used in the proof of Theorem 1, we have

So

and

Cok2 = kr2Q = k[(p-l)-Ç]Q,     and    Ker^CjQ.

rankQ(//2(X£; Q)) = k(p - l) - kÇ + cy

tankQ(H2(Xbk; Q)) = tankQ(H2(Xuk; Q)) - (p - l) = (k - l)(p- l) + Cj -¿cf.
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This is the same as the result obtained in [3, Theorem 2], except that the

present version gives an explicit calculation for ß.   in terms of the Y-tor-

sion invariants.

As in Theorem 3, by considering prime-power coverings we obtain more

information.   The following corollary generalizes the corresponding result

found by Durfee (see [l]) for 2-fold branched cyclic coverings of algebraic

links, and in it we adopt the hypotheses and notation of Theorem 4:

Corollary 5.  n = 1,  u > 2   and k =pT, p a prime.    Then /3j < ik- 1 )ip- l).

Proof.   By the methods of [5, Theorem 2.4] we have

A!1(1) = 0, *<£,

=   + 1, l   > cf +   1 .

Hence for k a prime power, this means that it — 1) and k.it) are relatively

prime in Y in the range ; > (çf + l). So the contribution to c can come only

from the  X .it) with  j < cf, hence   c   < k&.
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