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COUNTING PATTERNS WITH

A GIVEN AUTOMORPHISM GROUP

DENNIS E. WHITE1

ABSTRACT. A formula, analogous to the classical Burnside lemma, is

developed which counts orbit representatives from a set under a group ac-

tion with a given stabilizer subgroup conjugate class.   This formula is

applied in a manner analogous to a proof of Polya's theorem to obtain an

enumeration of patterns with a given automorphism group.

1. Let S be a finite set and G   a finite group acting on S,   Let A be a

system of orbit representatives for G acting on S.   The following theorem

is well known:

Theorem 1 (Burnside  [l]). For any function a> defined on S satisfying

a>(os) = a>(s) for all o £ G, for all s £ S, we have

whe

¿j co(s) = —-   X     Z-  oj(s)x(os = s)
s££k \G\   aeG    seS

Î1     if statement is true,

0     otherwise.

For s £ S  let  G    = \a £ G: as = s\ be the stabilizer subgroup of G  at

s.   Let Gj, G2, . . ., G„  be a complete set of nonconjugate subgroups of

G, ordered such that   |Gj| > . • . > |G».|.   For any two subgroups  H, K C G

we define

M   (H) = -L   £  xto-ffo- J C K).
K \K\ aeG
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MK(H) is sometimes called the mark of K at H,   The matrix M = (MG .(G.))

is triangular and Mç (G .) > 1   so that we can define B = M~   , B = (b..).

We also note that M^(H)  is constant on conjugate subgroups of G.

In this paper we show the following result:

Theorem 2. For any function co defined on S satisfying a>(o~s) = co(s)

for all a £ G, for all s £ S, we have

N

Z u(s)X(Gs - G.) = £   b{.  Z  co(s)X(Gjs = s),
sei ,=1 seS

where G  ~ G.  means  G     conjugate to  G. and G s = s means s  is fixed

by all of G ..

In an elegant paper [2], DeBruijn showed that Pólya's counting theo-

rem [5]  can be obtained from Theorem 1 upon letting S = R   , where  R      is

the set of functions from the finite set D = {1, 2, . . ., \D\\ to the finite set

R = [1, 2, ..., |R|i, letting G  act on D  and hence on R     by setting af(d) =

f(a~ d), and setting co(f) - HrfeDx,. ,., where xv x2, ■ • •  ate indeterminate.

If we use the same approach, starting from Theorem 2 instead of Theorem 1,

with no additional difficulty we obtain a more refined version of Pólya's

theorem.

Let 2 .(x,, x2, • • •) denote the pattern inventory fot patterns whose

automorphism group is conjugate to G .:

Q.(x15 x2, ■■■) = Z oj(f)x(Gf^ G p.

Let P .(y.,y2, • • •) denote the orbit index monomial:

yd '   '
deD

where q r (d) = the number of orbits of G.  acting on D of length d, and

y1?y  , ...  are indeterminates.   Then we have

Theorem 3.

Q.(xv x2, •■■)= Y*b..Pfyv y2, ■■• )

where we substitute  2  eRxl for yreR  r

This result was proved independently by Stockmeyer [8],   However, he

obtained it only as a by-product of elaborate Möbius function techniques.
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We show here that Theorem 3 can be derived by simple algebraic manipula-

tions.

We were led to this result by considering the general isomorph rejec-

tion problem in a multilinear setting [9], [10],   In this setting, besides

Theorem 3, we have also derived from Theorem 2 a whole variety of results

counting patterns with a given automorphism group.   In particular, for exam-

ple, we may let  G  act on R   and D  ot let  G  act on D  and H  act on  R.

Or we may extend   S to be a cartesian product of finite function spaces, G

acting on each of them.   Or we may observe that a theorem of Foulkes  [3]

is nothing more than Theorem 2 applied to a special function space.

2. We shall first prove Theorem 2.   The weight function a>  in this theo-

rem is commonly thought of as a function from  S  into an algebra, usually

the algebra of polynomials.

Proof of Theorem 2. Note that for any subgroup H CG, ^¿g X (o-Ho~   ^Gj

is constant on orbits of S, so if we denote the orbit of s  by  O     and

recall that   \G\ = |G   |  |0   |   we have

N (  )

E^G.W   Z  »('WC^C,)-   Z  T^T   Z  X(rHT~lCGs)
2=1       *        2>£A seA   '    -s'   TeG

- Z T^l Z aw*"1 c G,>
JTc lG*l I0*' reG

= ¿jll a>(«)x(// C GTS) = Z *>i»X<H C Gs).
'    ' reG ses seS

Inverting M  gives our result.

We shall now use Theorem 2 to prove Theorem 3.   The similarities be-

tween this proof and the proof of Pólya's theorem in [2]  are obvious.

Proof of Theorem 3. Note that

N

fi^V'^'Ë  hij     £   ¿*/>X<Gy/-/>-
7 = 1 /£RD

But G ./ = / means o/ = / for all (T e G., or f(d) = /(ff~ M  for all d e D,

for all deG.,   Thus, / must be restricted to be constant on the orbits of
7 '

G.  acting on D.   We can then define /  such that  G ./= / by defining it on

each orbit.   Thus,

z co(f)X(G.f=n=     z        n lAl
7(A)

!£RD /eROrb(G.:D)      Aef)tb<G.:D)
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where  Orb(G : D) is the set of orbits of G.  acting on D.   Using the familiar

sum-product interchange gives

z co(/)x(cy/=/)=    n     z *lAl
. €RD AeOtb(Gj :D)    reR

= nfz^Gi-p,(i^i^-)-Q.E.D.
deD\reR       I VeR reR '
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