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ABSOLUTE SUMMABILITY MATRICES THAT ARE

STRONGER THAN THE IDENTITY MAPPING

J. A. FRIDY

ABSTRACT. The main result gives a simple column-sum property which

implies that the matrix A maps /. properly into I , i.e., | S A [l ]. Al-

so, the means of Nörlund, Euler-Knopp, Taylor, and Hausdorff are investiga-

ted as mappings of  I    into itself.

1. Introduction.   Let A   be an infinite matrix defining a sequence to se-

quence summability transformation by  (Ax)   = 2, >x a   ,x,.   The inverse im-

age of /    under A   is denoted by   /. ; and A   is called an  /-/ matrix provided

that  I   C lA.  In [7] Knopp and Lorentz proved that A   is an  /-/ matrix if and

only if there is a number  M such that for each k,

a) Z KJ<M-
7721

Also, A   is sum-preserving if for each x  in  /  ,  2     , (Ax)   = S,   , x,.   The
' r ° '      77>1 n fe>l     k

/-/ matrix  A  is sum-preserving if and only if for each k,

7Z>1

In [2] Agnew gave a simple sufficient condition that A   maps a noncon-

vergent sequence into a convergent one.   The principal result of this paper is

an analogue of this condition for   /-/ matrices; i.e., we shall give an explicit

property of the terms  \a   A that implies   / C¿ lA.   In the final section, we in-

vestigate the absolute summability properties of some well-known matrix

methods.

2. The main theorem.  Following Agnew, we might conjecture that

lim    ,  a      = 0 implies   /    4 I-   (The double limit is taken in the Pringsheim
n, k    nk r A °
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ABSOLUTE SUMMABILITY MATRICES 113

sense:   \a   , J < e whenever  n > N and  k > N.) This conjecture is reinforced

by the observation that it is true in case  A   is lower triangular with a      4 0;
-1 i _1

for then A~    is not   /-/ because  sup   \a     \~   - oo.   However, the following

example shows that, even for lower triangular matrices, this property is not

sufficient in general.

Example.  If

a
nk

l/k,     if   k(k-  l)/2<  77 <  k(k+  l)/2,

0,        otherwise,

then A   is a lower triangular, sum-preserving  /-/ matrix for which  lim    ,   a  ,

= 0,  but  lA = /.

If Agnew's property is replaced by  lim,  S     _  \a     \ = 0,  then it is easy

to construct an unbounded sequence  x such that  S    |(Ax)  |  converges.   In-

deed, it is sufficient that only a subsequence of the column sums tends to

zero, so we can state the following result (cf. [4 Proposition]).

Proposition.   // A   z's a matrix such that

(3) liminf   £   KJ = 0,
k-        nàl

then lA 4 I.

The simplicity of condition (3) is offset by the fact that it precludes (2),

and therefore, no sum-preserving matrix can satisfy it.   It is, therefore, nec-

essary to weaken (3), which leads us to the main result.

Theorem 1.   // A   is an l-l matrix for which there exists an integer m

such that

(4) lim inf   Y,    \ank\ = °>
*        n>m

then  l C¿ /. .

Proof.  The hypothesis (4) implies the existence of an increasing integer

sequence  U(z')!  such that for each  z,  1 \a    .,..( < 1/i.    If x  is chosen
^ '       n>m   '   n,k(iy

so that   |x, ,.,| < 1/z,  and x, = 0 when  k 4 k(i), then

mm n>m   £ > 1

a.ir1

Z z KMiy < £ r.— 2

i>l   n>m £sl
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Hence, Ax is in  /    provided that x  is in the domain of A.   The difficulty is

that we must ensure the convergence of  2. a.    k(\xui-\ when n < m.   To

achieve this we must choose a subsequence  |k(z')S  of \k(i)\ so that for each

72 < 7?2, S. a      f^x  ... converges, while   |x   ...| = 1/z.   Since (1) implies that
z     n,K.\l)   K\l ) K\l )

the row sequences are bounded, the proof will be completed by the following

lemma.

Lemma. //, for each n less than m, \a AT. is a bounded sequence,

then there exists a sequence x that is not in I such that S, a x con-

verges for each n less than m.

Proof.   Let  M    denote   lim sup, \a   ,|,  and assume—without loss of cen-
77 rk '   nk' ° •

erality—that  M, > M. > • • • > M     , > 0. We may also assume that the  a   , 's
' 1   —       2  — —       777—1  — J nk

are real, for otherwise we could treat  |Re(a   ,)}T  ,   and  {lm(a     )}°°  ,   sep-
' nk    « = 1 nk    k—1        r

arately and have  2(772 — 1) bounded sequences.

First, suppose  M      .   > 0. Choose a subsequence  {a,  ,,.J. of la,  ,1,
'      rr m-\ * 1»*(0 i 1 ,k k

such that the terms are either all positive or all negative and for each  z,

i + 1 -2
M, < \a,  ...J < —-M,i + 2    1 - '   lMiV - .2 _ ,     l"

Now choose a subsequence \k (i)\ of \k(i)\  so that all of the terms [a    ,«,..1

ate of the same sign and for each  i,

i + 1 ..    . , ,   .      i2
TV1M2<\a2ikHi)\<-—M2.

Choose successive subsequences so that after m - 1   selections, we

have a subsequence  {k(z')S  of the positive integers such that if 72 < 772, then

{a    „,..!. are all of the same sign, and for each  z,
n,K(i) 1 °   ' '

(5) 4±4m   < \a       ■.■!<      ¿2     M .
! + 2    n - I   n.KdV -   .2 _ .     n

Now define  x  by

[(-l)Vz',    if  k = k(z') for some  i,

0, otherwise.

Then  2, a   ,x, = 'S., a      ..,(-l)l/z.   This is obviously an alternating series
k    nk   k 1    n,K{i) "

whose general term tends to  0.   Also, from (5) we have

7 K.k(£)I $ ¡r-¡«. ^ rri tt-im«-i - rrr l"«^«)l-
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Hence, by the familiar alternating series test, 2, ankxk is convergent.

In case  M = 0,  the preceding construction will yield an x for which

2, a    x    converges when M   > 0. Then remaining sequences \a   A fot
/Z       Tt R*     /c *£ Tí rZ

which  M   = 0 are null sequences, and the selection of subsequences for

which  2, a    x,   converges is straightforward.   Hence,  2,  a   ,x,   converges

for every 72  less than  772,  which completes the proof of the Lemma and the

Theorem.

Although it is possible for a sum-preserving  /-/ matrix to satisfy (A), it

is easy to see that no lower triangular matrix can satisfy both (2) and (A).  In-

deed, if A  is lower triangular, then (A) implies (3).   This leads us to conjec-

ture that perhaps a weaker condition, such as   lim inf. |2 a   A = 0,  might

be sufficient to imply lA 4 I   . However, if

[    1,    if n = 2k — 1,

a   , =  { — 1,    if 72 = 2k,
nk      1

\   0,    otherwise,

then  2 a     = 0 if  k 4 772/2,  but clearly  / . = /.
72>77Z       nk 'A

3. Absolute summability properties of some classical methods. Since

many of the classical means are given by lower triangular matrices with non-

zero diagonal terms, we can use the following observation in place of (3) for

such matrices:   ¡A^l     if and only if A   satisfies (l)but A       does not.

Note that (3) implies that A~    does not satisfy (1) because  sup   \a     |-1 =00.

The Nörlund mean  /V„  is given by  N An, k] = p      JP    if k < n, and
p ** p n — fe       n —

N An, k] = 0 if k > 72, where  p is a nonnegative number sequence such that

p0>0and   Pn^ll=0Pk.

Theorem 2.  The Nörlund mean N    is an l-l matrix if and only if p is

71Z72    Z    .

Proof.  If p is in /   , then for each k

00 00    p 00 00

Z Vw' « - £ --—^ < po_1 Z '„-* = ¿Ö1 z <v
77 = 0 n=k „ n=fc £ = 0

hence,  N    satisfies (1).   Conversely, if p is not in  I1, then by a result of

Abel (see footnote in [6, p. 45]), lim   <l/F   ! = 0 while   2    ö /P    diverges.
r n n n    n      n °

Thus  N    is not an  /-/ matrix.
P .

From Theorem 2, we see that if ll Ç lN  , then lim inf. \p, /P, ] > 0, so

property (4) does not hold.   However, we can prove a Mercerian-type theorem.
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For, if  XA < r < 1   and  pQ>rP  ,  then  N An, n] > r (for every  72).   Therefore,

by [5, Theorem 6], we conclude that   Zm    = Z  .  This proves the following as-

sertion.

Theorem 3.   // pQ > 2 2fe2l pk, then  lNp = ll.

A particular example of Theorem 3 is seen in case  p is a geometric se-

quence:   more precisely,  if p,., < Po$~   ~ > then  Zm   = Z  .

The Euler-Knopp means ([1], [6], and [9]) are given by

1, A]= <

(0,

,(ï)rk(l-r)n-k,     if  k<n,

Ein,

if   k > 72.

A straightforward application of the Maclaurin series expansion of  (1 — z)

shows that each column sum of E    converges absolutely to  l/r provided that

0 < r < 1.   If  0 < r < 1,  then  lim    E [n, n] = 0,  so  E~    is not an  l-l matrix.
— ' n      r     ' ' r

We summarize this as follows:

Theorem 4.   The Euler-Knopp mean rE    is a sum-preserving  l-l matrix

for which  Ie   4 I    if and only if 0 < r < 1.

The Taylor methods ([3], [8], and [9]), which are given by

!0, if  k < 72,

(l)rk-"(l-r)n+l,    if  k>n,

ate related to the Euler-Knopp means by a transpose relationship.   More pre-

cisely, if E    denotes the transpose of E, then  T   = (1 - r)E      .  It follows

that  T   is an  /-/ matrix for precisely those  r's for which  E    maps bounded
r r

sequences into bounded sequences, viz.,   0< r < 1. We note that (4) is not

satisfied by  T   when  0< r< 1;  for, each column sum is   1 — r, and since the

first  722 rows are null sequences we must have  2 a   , > (1 — r)/2  for suf-
* 772777       nk —

ficiently large  k.

The Hausdorff means ([6] and [9]) can be defined by

H4,[n,k] = J¿ E([n, k]d<p(t),

where  E    is the Euler-Knopp mean and  J"Q   \ctf>\ < <».   The quasi-Hausdorff

mean  H ,   is simply the transpose of H ,.   Therefore,  H ,   is an   /-/ method

if and only if  H ±   is a bounded operator, and Hardy [6, pp. 278—279] charac-

terizes this by  j} \dcp(t)\/t < 00.   Furthermore, the column sums are
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!=0      V 4 = 0 ^°       *fc = 0

Thus we may state the following result.

Theorem 5.   The Hausdorff matrix H^ generated by the mass function 96

is an  l-l matrix if and only if fQ  \d(p(t)\t~    converges.   Moreover,   H .   is

sum-preserving if and only if j*« t~   d<f>(t) - 1.

The corresponding theorem for  U,   can be stated without proof since it

depends upon only the regularity conditions for  H ,   [6, pp. 256—258].

Theorem 6.  The quasi-Hausdorff matrix H,   is an l-l method if and only

if <h  is a function of bounded variation on  [0, 1].    Moreover,   H ±   is sum-

preserving if and only if cS(l) — <p"i0) =1.

Note that in Theorem 6 it is not required that r/>(0+) = c/>(0), so <f> need

not be a "regular" mass function.   Since cS(0+) - <f>(0) = lim    H An, 0] =

lim,  HAß, k],  it might seem possible that  H+   is an  l-l method and satisfies

(4).   Unfortunately this cannot be the case, because if k > 0, then

limB H¿[n, k] = 0,

and

Z lw£t».*]|= Z IäJ&».*]|- Z l»J&».*]|
n>m n~0 n~0

r 1 m — \

=J0 1^1 - |f/;ro, *]| - z l«>.*]|
72=1

5 f11^12 J0+

for 4 sufficiently large.

Finally, we remark on the conspicuous absence from our study of the

very familiar Cesàro means.   The fact is that they are not  l-l methods.   For,

if a> 0 and cp(t) = 1 - (1 - t)a, then  H ,   is the Cesàro mean of order a [6,

p. 275].   But clearly   fj t     dcfeit) is divergent, so by Theorem 5, Ca is not an l-l

method.
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