ON THE SET OF EXTREME POINTS OF A CONVEX BODY

JAMES B. COLLIER

ABSTRACT. We prove the following: Given a subset X of a compact 0-dimensional metric space Z and an integer $d \ge 3$, there is a homeomorphism of Z into the boundary of a convex body C in E^d mapping X onto the set of extreme points of C if and only if X is a G_{δ} set with at least d + 1 points.

A convex body is any closed bounded convex set with nonempty interior. It is well known that the set of extreme points of a convex body in E^d is a G_{δ} set with at least d + 1 points. We may consider as a partial converse to this the fact that for each integer $n \ge d + 1$ there is a convex body in E^d with exactly n extreme points. The purpose of this note is to prove a more general converse. We denote the set of extreme points of a convex set C by ext C. Our main result is

Theorem 1. Let X be a subset of a compact 0-dimensional metric space Z, and let d be an integer with $d \ge 3$. There is a homeomorphism of Z into the boundary of a convex body C in E^d mapping X onto ext C if and only if X is a G_8 set with at least d + 1 points.

The boundary of any convex body in E^d is homeomorphic to the (d-1)-sphere, S^{d-1} . For each positive integer d we define χ_d to be the family of all subsets X of S^{d-1} for which there is a homeomorphism of S^{d-1} onto the boundary of a convex body C in E^d mapping X onto ext C. The family we call χ_3 was first defined in [3] and the question raised of finding a characterization of that family. It is known that each member of χ_d is a G_δ set with at least d+1 points and that each closed subset of S^{d-1} with at least d+1 points is a member of χ_d . However, no proper open subset of S^{d-1} is in χ_d . Using Theorem 1 we may further state

Corollary 1. Any G_{δ} subset of S^2 with at least four points and whose closure is 0-dimensional is a member of χ_3 .

Copyright © 1975, American Mathematical Society

Received by the editors October 30, 1973 and, in revised form, December 17, 1973.

AMS (MOS) subject classifications (1970). Primary 52A15, 52A20.

Corollary 2. For $d \ge 3$ any subset of S^{d-1} with at least d+1 points and whose closure is countable is a member of χ_d .

These follow easily from results in [4, p. 532] and [2, p. 456], respectively, on extending homeomorphisms.

We proceed to the proof of Theorem 1. The closure, the boundary, and the convex hull of a subset A of E^d will be denoted by cl A, bd A, and conv A, respectively. For any compact subset K of the real line **R**, **R**\K is the disjoint union of countably many open intervals. Let e(K) be the set of endpoints of these intervals; then e(K) is a countable subset of K.

Lemma 1. Let Y be a compact 0-dimensional subset of R, and X a G_{δ} subset of Y which contains e(Y). Then there is a continuous function $g: Y \to \mathbb{R}$ such that $X \cap g^{-1}(s)$ is the set of extreme points of conv $g^{-1}(s)$ for each $s \in g[Y]$.

Proof. We construct a sequence $\mathcal{U}_0, \mathcal{U}_1, \ldots$ of open (and also closed) coverings of Y by pairwise disjoint sets so that for each $n \ge 0$, \mathcal{U}_{n+1} is a refinement of \mathcal{U}_n . For each U in \mathcal{U}_n we shall specify a compact subset $c_n(U)$ of U.

Since X is a G_{δ} set, $Y \setminus X$ is the countable union of a nested chain $K_1 \subseteq K_2 \subseteq \cdots$ of compact sets. We may choose $\mathcal{U}_0 = \{Y\}$ and $c_0(Y) = \emptyset$ and suppose that \mathcal{U}_{n-1} and c_{n-1} have been defined for some $n \ge 1$. To complete the inductive construction, we need only specify for an arbitrary $U \in \mathcal{U}_{n-1}$ the members V_0, \cdots, V_k of \mathcal{U}_n which are subsets of U and define $c_n(v_i)$ for $i = 0, \cdots, k$. Since U is compact and 0-dimensional, there is a finite open covering \mathcal{O} of U by pairwise disjoint sets each of diameter $\le 1/n$. Let V_0 be the union of those members of \mathcal{O} which intersect $c_{n-1}(U)$ and let V_1, \cdots, V_k be an enumeration of the remaining sets in \mathcal{O} . Choose $c_n(V_0) = c_{n-1}(U)$. By hypothesis the extreme points a_i , b_i of conv V_i are in X. We define $c_n(V_i) = \{a_i, b_i\} \cup (K_n \cap V_i)$ for $i = 1, \cdots, k$. Hence the extreme points of conv $c_n(V_i)$ are a_i , b_i and these are the only points of $c_n(V_i)$ which lie in X.

Consider each \mathcal{U}_n to be a topological space with the discrete topology. Then there is a continuous mapping $f_n: \mathcal{U}_n \to \mathcal{U}_{n-1}, n \ge 1$, defined by $U \subseteq f_n(U)$, and there is a continuous mapping $g_n: Y \to \mathcal{U}_n$ defined by $y \in g_n(y)$. Thus $\{\mathcal{U}_n, f_n\}$ is an inverse limit sequence. Let \mathcal{U}_∞ be the inverse limit space of $\{\mathcal{U}_n, f_n\}$, and let $g_\infty: Y \to \mathcal{U}_\infty$ be the continuous mapping induced by $g_n: Y \to \mathcal{U}_n$. Since Y is compact and \mathcal{U}_n is discrete for each $n \ge 0$, \mathcal{U}_∞ is compact and 0-dimensional; hence there is a homeomorphism $h: \mathfrak{U}_{\infty} \to \mathbf{R}$. We define $g = h \circ g_{\infty}$. From the construction of g_{∞} it is evident that for $x, y \in Y$, g(x) = g(y) if and only if either x = y or $x, y \in c_n(U)$ for some $U \in \mathfrak{U}_n$ and $n \ge 0$. Since each point in $Y \setminus X$ lies in some $c_n(U)$ but is not an extreme point of conv $c_n(U)$, g has the desired property. \Box

The next lemma may also be proved using inverse limit spaces. However, we omit the details since the method is similar to that used in [1, \$]-15].

Lemma 2. Let Y be a compact, 0-dimensional metric space and X a countable dense subset of Y. Then there is a homeomorphism $h: Y \to \mathbb{R}$ such that e(h[Y]) = h[X].

Proof of Theorem 1. One direction is immediate. To prove the other direction, suppose X is an infinite G_{δ} subset of Z. Lemma 2 implies that we may assume cl $X = Y \subseteq \mathbb{R}$ with $e(Y) \subseteq X$. Let $g: Y \to \mathbb{R}$ be as in Lemma 1, and define $G: Y \to E^3$ by $x \to (x, g(x), g^2(x))$. This is a homeomorphism of Y into the graph of the convex function on E^2 given by $(x, y) \to y^2$. Let C = conv G[Y], then ext C = G[X]. Since we may extend G to a homeomorphism $h: Z \to bd C$, we have established Theorem 1 for d = 3.

Assume the theorem is true for d = n, and express Z as the disjoint union of closed subsets Z_1 , Z_2 so that $X_i = X \cap Z_i$ is infinite, i = 1, 2. By assumption there is a convex body C_i in E^n and a homeomorphism $h_i: Z_i \rightarrow bd C_i$ with $h_i[X_i] = ext C_i$. We may consider C_1, C_2 to lie in distinct parallel hyperplanes in E^{n+1} . Let $C = conv(C_1 \cup C_2)$ and define the homeomorphism $h: Z \rightarrow bd C$ by $h/Z_i = h_i$, i = 1, 2. Then C is a convex body in E^{n+1} and h[X] = ext C. \Box

REFERENCES

1. J. G. Hocking and G. S. Young, *Topology*, Addison-Wesley, Reading, Mass., 1961. MR 23 #A2857.

2. V. L. Klee, Homogeneity of infinite-dimensional parallelotopes, Ann. of Math. (2) 66 (1957), 454-460. MR 20 # 1200.

3. _____, Extremal structure of convex sets. II, Math. Z. 69 (1958), 90-104. MR 19, 1065.

4. K. Kuratowski, Topology. Vol. II, 3rd ed., Monografie Mat., Tom 21, PWN, Warsaw, 1961; English transl., PWN, Warsaw, 1968. MR 24 # A2958; 41 #4467.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, CALIFORNIA 90007