
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 47, Number 1, January 1975

COMMUTATIVE REGULAR RINGS WITHOUT

PRIME MODEL EXTENSIONS

D. SARACINO1 AND V. WEISPFENNING2

ABSTRACT.   It is known that the theory K of commutative regular

rings with identity has a model completion K  .  We show that there

exists a countable model of K  which has no prime extension to a model

of K'.

If K and K     ate theories in a first order language  L, then  K    is said

to be a model completion of K if K     extends  K, every model of K  can be

embedded in a model of K  , and for any model A   of K and models B,, B,

of K    extending A, we have (ßi«)aEA = (B2, a)     A, i.e.  B.   and B,  are

elementarily equivalent in a language which has constants for the elements

of A.  If a theory  K has a model completion  K  , then the models of K

can reasonably be regarded as the "algebraically closed" models of K;

for example, the theory of algebraically closed fields is the model comple-

tion of the theory of fields.  It was shown in [3] that the theory  K of com-

mutative regular rings with identity (formulated in the usual language L

fot rings with identity) has a model completion.   We recall that a commuta-

tive ring R with identity is said to be regular (in the sense of von Neumann) if

for any element a £ R  there exists  b £ R   such that a  b = a.  (A good ref-

erence is Lambek [2].)  The model completion   K    is given by the following

axioms:

(i)   the axioms of commutative regular rings with identity;

(ii)   an axiom stating that there are no minimal idempotents, i.e.

Vx(x2 = x A x / 0  -♦ 3y(y2 = y A y^0Ay + xAyx = y)\

(iii)   a set of axioms stating that every monic polynomial has a root.
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Wé will also consider the theory  K   obtained by deleting axiom (ii)

from  K .

If B  is a model of a theory  T, and A  is a substructure of B., then  B

is called a prime model extension (for T) of A, if for every model   C of T

extending A, there exists an embedding f:B —► C which is the identity on

A.  Of course if T is model-complete (as in K ), then "embedding" can be

replaced by "elementary embedding".  In this paper we consider the question

of whether over every commutative regular ring A  there exists a prime model

extension for K ; we also consider the same question for K*.  In both cases

the answer is negative.

We begin by recalling some model theoretic preliminaries in the setting

of commutative regular rings.  Let R be a model of K; we expand L  to the

language L(R)  by adding a new constant symbol a_ for every element a £ R.

The diagram  D(R)  of R  is the set of all polynomial equations and inequa-

tions involving the constants a which hold in R when a_ is interpreted as a.

Every model of the theory K U D(R) is (up to an isomorphism) an extension of R.

Let  F(R)  be the set of formulas in  L(R)  with one free variable x.   For

cp, ifj, in  F(R)  we set <p ~ if/, it and only it K   U D(R) h d> *-* if/.  This gives

us an equivalence relation on  F(R); we denote the equivalence class of <p

by [<7J].   The equivalence classes form a Boolean algebra  B(R) (called the

Lindenbaum algebra of  K   U D(R))  under the operations [ei>] + [i/r] = [ci V ip],

Id)] ' = llcp]. We call the elements of the Stone space S(R) of B(R)  1-types

over R. Notice that a point p £ S(R)  is isolated in the Stone topology if and

only if there is a formula <7j  such that K  U D(R) \- <p —> ip fot every if/  such

that [ip] £ p, and [r/j] 4 0  in  B(R). Such a formula <p is called a generator

for p.

Since K U D(R) is complete, it is clear that if p £ S(R) is isolated,

then every model A of K U D(R) realizes p, i.e. there exists a £ A such

that ![<p]: A ^cb(a)\ = p.

We shall present our results within the framework of finite forcing rela-

tive to  K UD(R) (tot  R  countable).  The fundamental papers on finite forcing

in model theory are [l] and [4].  We expand L(R)  to  L(R, C) by adding a

countable set C of new constant symbols.  In our setting, a forcing condition

yiix, • • • , a_   ,£.,••• i c  ) is a finite set of polynomial equations and in-

equations in the language L(R, C)  which is consistent with  K u D(R), i.e.

such that there exists a model A  of K extending  R   and c,, •-• , c    in A

such that A   satisfies all the statements in  q  when each  a_ .   is interpreted

as t2., and each  c_.   is interpreted as  c.  If q is a condition and r/3  is a
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sentence in  L(R, C), then the notion   "q forces tp" is defined by induction

on the structure of cp, as follows:

(i)  If <7J is an equation, q  forces cp if and only if cp £ q;

(ii)  q forces cp A ip if and only if q  forces tp and q  forces ip;

(iii)  q  forces tp \J ip if and only if q  forces  tp or q forces ip or both;

(iv)  q  forces    3xç6(x)  if and only if for some c_ £ C, q  forces cp(c);

(v)  (7  forces "1 0 if and only if for no condition  q     extending q is

it the case that q     forces  cp.

A sequence  \q. F"-,   of conditions is complete if for each sentence ç6

of   L(R,   C)   there is  some  q.   which  forces  either   tp   or   "1 cp.  A complete

sequence determines in a canonical way (see [l] or [4]) a ring A   which con-

tains R.  Every element of A  is named by some c   in such a way that all

the statements in any q. hold in A (when q_ is interpreted as a for a £ R),

and any equation which holds in A  is in some q ..  A  is called finitely gen-

eric for KU D(R).  Since K U D(R) has a model completion (namely  K   U

D(R)), this implies [l] that A  is a model of K'u D(R); in particular A  is a

model of K .

We can now prove

Theorem 1.   There exists a countable model R  of K which has no

prime extension to a model of K .  Moreover, R  can be chosen so that all

the isolated points in S(R) are realized in R, i.e. have a generator x = r_

for some r £ R.  In particular the isolated points are not dense in S(R).

Corollary.   K     is not quasi-totally transcendental.  (For this notion

see [5].)

Remark.  It is easy to see that  K    is K-unstable for all infinite cardi-

nals  K.

Proof of Theorem 1. Let R    be the ring of all locally constant functions

from the Cantor space X into Q, an algebraic closure of the rationals Q.

(A function / on X is locally constant if for every x £ X there exists a

neighborhood U of x on which / is constant.)   R    is a model of K     and R

is countable.   For, notice that any locally constant function  f on X  deter-

mines a partition of X into finitely many clopen sets P.  such that / is con-

stant on each  P..  Since Q  is countable, any such partition is determined

in this way by only countably many f's; and there are only countably many

such partitions of X.

Pick a point x„   £ X.  Let R C R '  consist of all the elements / £ R

such that f(xQ) £ Q.  It is easy to see that Risa regular ring.
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Now suppose  R has a prime extension  M  to a model of K  .  We can

assume  R C M C R  , and then we know that M  is an elementary substructure

of R . Since R is not a model of K , we can pick d £ M - R.

Let p be the point of S(R)  realized by d in Af. We will show that there

exists a model of K   U D(R), no element of which realizes p; it follows

that M  cannot be embedded in this model over R, so M is not prime.

Let C, as before, be a countable set of new constants not in L(R), and

let \tp. }^° = i   be an enumeration of the sentences in  L(R, C).  We will in a

moment define a complete sequence  \q A of forcing conditions, but first we

state the following

Lemma.   Let q  be a condition.   Let c_., •■• ,c_     be the elements of C

mentioned in a.   Then there exist elements a,, b,, • • • , a , b     in  R such

that q U \b . ■/ c . a . I i = 1, • • • , 72 ! is a condition, where a., b . £ R  are

such that  b. = da .  in  R   .
1 z

We will prove the Lemma later.

Now define a sequence \q A of conditions as follows:   Let  q,   be a

condition which forces either  tp    orl tp..  Let q2  be an extension of qx

obtained by using the Lemma.  If z > 1  is odd, let  q . be an extension of q.   ,

which forces either tp, .  ....  or A4>, ■   ,   /-,•  If 2 > 1  is even, let q. be an
Mz + l)/2 '^(z+l)/2 ' ^z

extension of q _x obtained by using the Lemma. As indicated above, the

complete sequence \q . \ determines a model R of K which extends R,

and every element of R     is denoted by some  c   £ C.

Suppose some element r £ R     realizes p, and that this element is de-

noted by  c ..  Then for some odd j, c_.  appears in  q..  Thus there exist a.,

b. in  R   such that  b . = da. in  R     and q .   ,   contains the statement b . 4
1 11 7+1 —1

ca..  Since  b. 4 c .a . is in  q .   ,, b . 4- xa . is in the type realized by  r
— 1—1 —1       —1—1 Y; + l    —1 — 1 rF '

in  R  .  But b_.-xa_. is in p, since p  is the type realized by  d in  R     and

b. = da..  Thus r does not realize p in  R  .  This proves the first statement

of the theorem.

To prove the second statement, suppose there is an isolated point p

in S(R)  which is not realized in  R.  Since p is isolated there is d in  R    —

R which realizes p.  Then by the above, there exists a model of K   U D(R),

no element of which realizes p. Hence p is not isolated, a contradiction.

To see that the isolated points are not dense in S(R), observe that if

<p(x) is a formula in L(R)   such that K ' U D(/?)h 3 xcp(x), but R \= ~| 3 xtp(x),

then the neighborhood in S(R)  determined by tp(x)   contains no isolated
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points, since all the isolated points are realized in  R.  An example of such

a formula is  x   =2.

This finishes the proof, modulo the Lemma.

In proving the Lemma we will work with idempotents of  R  , and it will

be helpful to make some preparatory remarks about them.  An idempotent  e

of R     is an element e in  R     whose values are everywhere either 0 or 1.

We identify  e with the clopen subset of X  consisting of all points x £ X

such that e(x) = 1.   This gives a 1-1 correspondence between the idempo-

tents of R     and the clopen subsets of X.   Thus if   e, f   ate idempotents,

we say  e C / if  e(x) = 1  implies f(x) = 1   for all x e X.   Furthermore the

correspondence makes it clear what we mean when we say that an element

of R    is constant on some idempotent.

Let q be a condition, let h,, • • • , h     be all the elements of R   such

that h_ . occurs in q, and let _ç,, • • • , _c_    be the elements of C which oc-

cur in q.  Let <p\x., • • • , x ) be the formula obtained by replacing c. by

x. in the conjunction of the elements of q.  Then since q is a condition, the

formula   3xj ••-     3x0 holds in some model of K    UD(R), and hence in

all of them, since  K    is the model completion of  K.  In particular  R    |=  3x.

•••    3x cp, so there exist elements  c,, • • • , c     in  R     such that  R    \=
n~ 1 ' '      n '

tp(ç_x, • • • , £ )  when  c . is interpreted as  c.  and h_. is interpreted as h ..

çS(c., ••• ,c_)  is a conjunction of polynomial equations ¡P. .= P. -if .

and inequations  \P     . . 4 P     ■ ->i'=,   which hold in  R1.   For each  i, 1 < i

< /, let x. 4 xn   be a point in  X  at which  P     . , 4 P        -,.  Let  e be an
—      ' Z 0 r S + 2,1 S+t,2

idempotent of R   such that  e(xQ) = 1   and  e(x;) = 0  for  1 < i < t. (The fact

that e  exists follows from the properties of X.)  Let /Ce be an idempotent

such that f(xA) = 1   and each of d, hx, • • • , h   , c,, • • • , c    is constant on

/.  Notice that since each  h . £ R, each h . has a constant rational value on/.

Let d* denote the constant irrational value of d on /. Let u, v in  R

be idempotents such that u, v C /, u(x ) = v(x ) = 0, uv = 0, and u 4 0, v 40.

Let y, z in  R  be such that y(x) = d*  tot all  x £ u  and y(x) = 0  for all

x /. u, z(x) = d*  for all x 6 v, z(x) = 0  for ail x ft v.

Since d*  is irrational, there exists an automorphism  p of Q   such that

p(d*) 4 d*.  Denote the constant values of the h . and c. on f by h ., c.,

respectively.  Then each h. £ Q, so  p(h .) = h. tot each  i.  Let  c. , 1 < i

< 72, be the element of R     which has the constant value  p(c*)  on  u  and

the same values as  c. on  1 — 22.
2

Let J = \j £ ¡1, ••• , 7z]|c. has the constant value  d* on / !.   For i £

J let a. = u  and let b. = y. For i 4 ]   let a. = v and let b. - z.
1 l l       J * I z



206 D. SARACINO AND V. WEISPFENNING

We claim that q U \b_ . 4 £• « • 11 < i < n] holds in  R '  when we interpret

a . as a ., b .  as  b., h . as h ., and c .  as  c..  The fact that the part in
— Z Z 7   —2 Z7   — 2 Z7 —Z Z r

brackets holds follows immediately from the definition of the a., b., and

c..  The inequalities in  q hold, because the c.   agree with the  c. on  x.,

••• , x .   The equalities hold, because the  c.   differ from the  c. only on  Z2,

and on u  the equalities hold for the c. , because p is an automorphism of Q.

This completes the proof.

Remarks.  (1) Using the model completeness of K , one can argue

directly from the Lemma that the type of d is not principal; one can then

fall back on the standard omitting types theorem to conclude that  R has no

prime extension to a model of K .  However we feel that the presentation in

terms of forcing is more intuitive and more nearly self-contained.

(2)  In the general framework of [5], one considers theories which are

model completions of universal theories.

In any commutative regular ring there exists for any element x a unique

element f(x)   such that x f(x) = x and f(x)  x = f(x) (see [2]).  If we enlarge

our language  L  to  L     by adding a 1-place function symbol /, and write the

axiom of regularity in the form

Vx(x2/(x) = x A /(x)2x = f(x)),

then, as is remarked in [3], K     is in L     the model completion of  K, and K

in  L     is a universal theory.  Since the function / is definable in  L, it is

easy to see that Theorem 1 holds for L     as well as for L.  Thus with re-

spect to  L   , K    is a natural example of a model completion of a universal

theory  K  which has a countable model  R   such that the isolated points are

not dense in S(R).

Recall that K    is  K    with axiom (ii) deleted.

Theorem 2.   // R  is the ring of Theorem 1, then  R  has no prime exten-

sion to a model of K .

Proof.  Suppose A  is a prime extension of R  to a model of K .  Then

since  R    (as defined in the proof of Theorem 1) is a model of K  , there

exists an embedding j: A —► R     such that /|R  is the identity map.   There-

fore A  has the same idempotents as  R, since R    has the same idempotents

as R.  Thus there are no minimal idempotents in A, so A  is in fact a model

of K .  Thus A   is a prime extension of R  to a model of K , contradicting

Theorem 1.

We should point out that  R     is a minimal extension of R  to a model of
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K1 (and K ).  That is, there is no model of K    (or K*)  sitting strictly be-

tween  R  and R  .   For suppose S  is a model of K     and R C S C R  .  Then

for any x £ X, \f(x)\f £ S\ = Q. Now let f £ R  ; we claim f £ S.  To see

this, we observe that if x £ X  there exists an idempotent  e    containing x

and /    £ S  such that  /    and / have the same constant value on   e  .  It
1 X > X ' x

follows from the properties of X  that there exist disjoint idempotents  ex,

• • • , e    in  R  and elements  f,,•••, f   in S such that X"   ,e . = 1, and I.e.
'     « 'l7 7'rz z=lz' 'zz

= /e., 1 •■< i < n.  Then

/=Í>z-=£/z-ze5-
2=1 2=1
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