THE USE OF ATTRACTIVE FIXED POINTS IN ACCELERATING THE CONVERGENCE OF LIMIT-PERIODIC CONTINUED FRACTIONS 1

JOHN GILL

ABSTRACT. A continued fraction can be interpreted as a composition of Möbius transformations. Frequently these transformations have powerful attractive fixed points which, under certain circumstances, can be used as converging factors for the continued fraction. The limit of a sequence of such fixed points can be employed as a constant converging factor.

The continued fraction

(1)
$$\frac{a_1}{b_1} + \frac{a_2}{b_2} + \cdots + \frac{a_n}{b_n} + \cdots$$

is said to be periodic in the limit provided $\lim a_n = a$ and $\lim b_n = b \neq 0$. Set

$$t_n(z) = a_n/(b_n + z), \qquad n \ge 1,$$

$$T_1(z) = t_1(z), \qquad T_n(z) = T_{n-1}(t_n(z)), \qquad n \ge 2,$$

and

$$\lim_{n} t_n(z) = t(z) = a/(b+z).$$

The *n*th approximant of (1) is obtained by setting z = 0 in

(2)
$$T_n(z) = \frac{a_1}{b_1} + \cdots + \frac{a_n}{b_n + z}.$$

(1) is called *periodic* if $t_n(z) \equiv t(z)$, $n \ge 1$; and if t has two distinct fixed points, u and v, where |u|/|v| < 1, then one can write [1]

Received by the editors August 9, 1973.

AMS (MOS) subject classifications (1970). Primary 40A15; Secondary 40A25.

Key words and phrases. Limit-periodic continued fractions, converging factors, circles of Appollonius.

¹ This research was supported in part by AFOSR grant 70-1922.

(3)
$$(T_n(z) - u) / (T_n(z) - v) = (u/v)^n (z - u) / (z - v), \qquad n \ge 1.$$

Clearly, $\lim_{n} T_n(z) = u$ for $z \neq v$.

An exact truncation error for a fixed z follows easily from (3). For z=0 and z=u this takes the forms

(4)
$$T_n(0) - u = -uK^n(1-K)/(1-K^{n+1}), \qquad n \ge 1,$$

and

$$T_n(u) - 0 \equiv 0, \qquad n \geq 1,$$

where K = u/v.

Instant maximum acceleration of the periodic fraction occurs, therefore, upon replacing z=0 by z=u in (2). Let $\{u_n\}$ and $\{v_n\}$ be the fixed points of $\{t_n\}$, chosen so that $|u_n|/|v_n|<1$. This paper is devoted to describing certain continued fractions, periodic in the limit, whose convergence may be speeded by setting z=u or $z=u_{n+1}$ in $T_n(z)$. A geometrical approach leads to a priori truncation error estimates of $T_n(u)$ and $T_n(u_{n+1})$. The technique is similar to that used in [2].

Previous articles associating the convergence behavior of continued fractions with the behavior of the sequences $\{u_n\}$ and $\{v_n\}$ include [2], [3] and [6]. Papers concerned with converging factors and/or contraction maps include [4] and [7].

Computations involving u (or u_{n+1}) are accomplished as follows: Let P_n and Q_n be the nth partial numerator and nth partial denominator of (1) [5] so that $T_n(0) = P_n/Q_n$, $n \ge 1$. Let $P_n^* = P_n + uP_{n-1}$, $Q_n^* = Q_n + uQ_{n-1}$, $n \ge 2$. Then $T_n(u) = P_n^*/Q_n^*$, $n \ge 2$.

The phenomena of instantaneous convergence is not restricted to periodic fractions. Write t_n in terms of its fixed points.

(6)
$$t_n(z) = -u_n v_n / [-(u_n + v_n) + z], \quad n \ge 1.$$

Let $u_n \equiv u$, $\lim v_n = v$. Then (1) becomes

(7)
$$\frac{uv_1}{u+v_1} - \frac{uv_2}{u+v_2} - \cdots - \frac{uv_n}{u+v_n} - \cdots$$

Theorem 1. Let T_n be defined in accordance with (6). If $0 < |u| < |v_n|$, $n \ge 1$ and |u| < |v|, then $\lim_{n \to \infty} T_n(0) = \lim_{n \to \infty} T_n(u) = T_n(u) = u$.

Proof. Theorem 1 [6] implies $\{T_n(z)\}$ converges to a common limit for all $z \neq v$. $T_n(u) \equiv u$, since $t_n(u) = u$, $n \geq 1$.

Theorem 2. Let T_n be defined as before. If u = v and $\sum |v_n - v_{n+1}| < \infty$, then $\lim_{n \to \infty} T_n(0) = \lim_{n \to \infty} T_n(u) = T_n(u) = u$.

Proof. Theorem 1 [3] guarantees the convergence of $\{T_n(z)\}$ to a common limit for every z.

It is well known that (1) converges provided $\lim (|u_n|/|v_n|) = |u|/|v| < 1$. lim $T_n(0)$ is near u if $u_n \approx u$, $v_n \approx v$. The pattern of convergence is more complicated when u = v or when $u \neq v$, but |u| = |v|. The first of these two special cases occurs in Theorem 2.

In the three theorems that follow it is assumed that $u_n \to u \neq 0$, $v_n \to v \neq 0$, $|u_n| < |v_n|$ and |u| < |v|, even though the last two restrictions may not always be necessary. Although having a formidable appearance, the hypotheses are not too difficult to satisfy.

Set

(8)
$$\epsilon_n = |u_n - u| \cdot |u_n|/[|v_n| - |u_n - u|], \quad n \ge 1,$$

and $H_n = |u_{n+1} - u_n| + \epsilon_{n+1}$.

Theorem 3. If

(i)
$$|u_n - u| > |u_n - u_{n+1}|$$
,

(ii)
$$|v_n| > 2|u_n - u|$$
,

(iii)
$$|v_n| \ge |u_n - u| + |u_n - u| \cdot |u_n|/[|u_{n-1} - u| - |u_n - u_{n-1}|],$$

(iv)
$$|v_n| > |u_{n+1} - u_n| + \epsilon_{n+1}$$

are all satisfied, then $\lim_{n \to \infty} T_n(u) = \lim_{n \to \infty} T_n(u_{n+1}) = \lim_{n \to \infty} T_n(0) = T$, where $|T - u_1| \le \epsilon_1$. Furthermore,

(9)
$$2\epsilon_n \prod_{j=1}^{n-1} \{|u_j v_j| [|u_{j+1} - u_j - v_j| - \epsilon_{j+1}]^{-2} \}$$

is an upper bound on both the errors $|T_n(u) - T|$ and $|T_{n-1}(u_n) - T|$. The monotonic divergence to 0 of the product is guaranteed by

(v)
$$|v_n|^2 - |v_n|(|u_n| + 2H_n) + H_n^2 > 0, \quad n \ge 1.$$

Proof of Theorem 3. $|K_n| = |u_n/v_n| < 1$, |K| < 1 imply $\lim_{n \to \infty} T_n(z) = \lim_{n \to \infty} T_n(0) = T$ for $z \neq v$ [6, Theorem 1]. The boundary of the disk

$$C(\epsilon_n, u_n) = \{z : |z - u_n| \le c_n |z - u_n - v_n|\} = \{z : |t_n(z) - u_n| \le \epsilon_n\},$$

with ϵ_n defined by (8), and

$$(10) 0 < c_n = \epsilon_n / |u_n| < 1$$

is a circle of Appollonius with respect to the points u_n and $u_n + v_n$ (see

the figure). Its center, g_n , and radius, R_n , are given by

(11)
$$g_n = u_n - c_n^2 v_n (1 - c_n^2)^{-1},$$

and

(12)
$$R_n = c_n |\nu_n| (1 - c_n^2)^{-1}.$$

The following conditions hold.

- $(1) \ t_n(C(\epsilon_n, u_n)) = N(\epsilon_n, u_n) = \{z \colon |z u_n| \le \epsilon_n\}, \ n \ge 1.$
- (2) $u \in C(\epsilon_n, u_n), n \ge 1.$
- (3) $N(\epsilon_n, u_n) \subset C(\epsilon_{n-1}, u_{n-1}), n \ge 2.$
- (1) follows from (8), (ii) and (10).
- (2) is equivalent to $|g_n u| \le R_n$, $n \ge 1$, which, by (11) and (12) can be written

$$|u_n - u - c_n^2 v_n (1 - c_n^2)^{-1}| \le c_n |v_n| (1 - c_n^2)^{-1}.$$

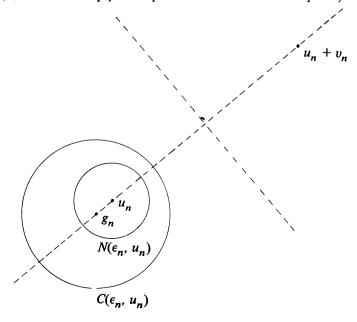
This inequality follows from

$$|u_n - u| + c_n^2 |v_n| (1 - c_n^2)^{-1} = c_n |v_n| (1 - c_n^2)^{-1},$$

which is equivalent to (8), if we assume (ii).

(3) can be written $|g_{n-1} - u_n| + \epsilon_n \le R_{n-1}$, $n \ge 2$, which will follow if $|u_{n-1} - u_n| + c_{n-1}^2 |v_{n-1}| (1 - c_{n-1}^2)^{-1} + \epsilon_n \le c_{n-1} |v_{n-1}| (1 - c_{n-1}^2)^{-1}$.

(i) and (ii) suffice to imply the equivalence of this last inequality to (iii).



The contractive property of the t_n 's now come into play. From (6) and the figure

$$\begin{aligned} |t_n(z) - t_n(z')| &= \frac{|u_n v_n| \cdot |z - z'|}{|z - (u_n + v_n)| \cdot |z' - (u_n + v_n)|} \\ &\leq \frac{|u_n v_n|}{(|u_{n+1} - u_n - v_n| - \epsilon_{n+1})^2} \cdot |z - z'|, \end{aligned}$$

where z and $z' \in N(\epsilon_{n+1}, u_{n+1})$. (iv) insures $|u_{n+1} - u_n - v_n| > \epsilon_{n+1}$. Thus the bound (9) is obtained. (v) makes the factors of the product less than one. The limit of these factors as $j \to \infty$ is |u|/|v| < 1.

Let $\{\zeta_n\}$ be any sequence of points such that $\zeta_n \in N(\epsilon_n, u_n)$. Then $\lim_{n \to 1} (\zeta_n) = \lim_{n \to 1} T_n(0) = T$, and $|T_{n-1}(\zeta_n) - T|$ is bounded by (9). An obvious choice of $\{\zeta_n\}$ is $\{u_n\}$.

This completes the proof of Theorem 3.

The hypotheses of Theorem 3 can be altered slightly to produce an alternate and possibly weaker form of (9).

Set

(13)
$$\epsilon_n = |u_n - u|, \quad n \ge 1,$$

and

$$l_n = |u_{n+1} - u_n| + \epsilon_{n+1}, \quad n \ge 1.$$

Theorem 4. If

- (i) $0 < \epsilon_n < |u_n|, n \ge 1$,
- (ii) $|v_n| > |u_n| + \epsilon_n, n \ge 1,$
- (iii) $|v_n| \ge (1 + |u_n| \epsilon_n^{-1}) l_n, n \ge 1,$

are all satisfied, then $\lim_{n \to \infty} T_n(u) = \lim_{n \to \infty} T_n(u_{n+1}) = \lim_{n \to \infty} T_n(0) = T$, where $|T - u_1| \le \epsilon_1$. Furthermore,

(14)
$$2\epsilon_n \prod_{j=1}^{n-1} \{|u_j v_j| [|u_{j+1} - u_j - v_j| - \epsilon_{j+1}]^{-2} \}$$

is an upper bound on both the errors $|T_n(u) - T|$ and $|T_{n-1}(u_n) - T|$. The monotonic divergence to 0 of the product is guaranteed by

(iv)
$$|v_n|^2 - |v_n|(|u_n| + 2l_n) + l_n^2 > 0, n \ge 1.$$

Remark. If $\epsilon_n(\downarrow)$ and $|u_{n+1}-u_n|<\epsilon_n$, then $|v_n|>2(\epsilon_n+|u_n|)$ implies (iii).

Proof of Theorem 4. Conditions (1), (2), and (3) in the proof of Theorem 3 are satisfied assuming (i), (ii) and (iii) of Theorem 4. The details of proof are much the same.

Example 1. $[300(10^{-4n} - 1)/(20 + 10^{1-4n})i]_{n=1}^{\infty}$, where $u_n = 10(1 - 10^{-4n})i$ $\rightarrow u = 10i$ and $v_n = v = -30i$. The hypotheses of Theorem 3 are satisfied.

actual error:
$$|T_n(0) - T|$$
 $|T_n(u) - T|$ $|T_n(u_{n+1}) - T|$ error bound $N = 2$ 1.4 1.4×10^{-12} 3.7×10^{-15} 2.2×10^{-9} 7.3×10^{-14}

Note that the error bound for $|T_2(u_3) - T|$ is given in the second row of figures.

The hypotheses of Theorem 3 can be changed, in the following special case without affecting the error bound (9). Replace b_n by 1 in (1).

Set

(15)
$$\epsilon_n = |u_n|(u_n - u)/(u + 1), \quad n \ge 1.$$

Theorem 5. If

- (i) u_n and $u \neq -1$, -1 lie on a ray, and u is between u_n and -1,
- (ii) $|u_n u|(\downarrow)$,
- (iii) $|u_n u| < |u 1|$,
- (iv) $|u_n| < |u+1|$

are all satisfied, then $\lim_{n \to \infty} T_n(u) = \lim_{n \to \infty} T_n(u_{n+1}) = \lim_{n \to \infty} T_n(0) = T$, where

$$|T-u_1| \leq |u_1| \cdot |u_1-u| / |2u_1-u+1|$$
.

Furthermore,

(16)
$$2\epsilon_n \prod_{j=1}^{n-1} \{|u_j(u_j+1)|[|u_{j+1}+1|-\epsilon_{j+1}]^{-2}\}$$

is an upper bound on both the errors $|T_n(u) - T|$ and $|T_{n-1}(u_n) - T|$.

Proof. Observe that $v_n = -u_n - 1$ and v = -u - 1.

- (1) follows from (i) and (iii).
- (2) is satisfied if $|g_n-u|=R_n$. A brief computation shows that this is equivalent to (15). (ii) implies $|g_{n-1}-u|\geq |g_n-u|$, which guarantees $C(\epsilon_n,\,u_n)\subset C(\epsilon_{n-1},\,u_{n-1})$. (iv) is equivalent to $N(\epsilon_n,u_n)\subset C(\epsilon_n,\,u_n)$. Hence (3) is satisfied.

Example 2. Set F(x) = (x/Arctan x) - 1, where [5, p. 116]

Arctan
$$x = \frac{x}{1} + \frac{x^2}{3} + \dots + \frac{n^2 x^2}{2n+1} + \dots$$

An equivalence transformation on F gives

$$F(x) = \left[\frac{n^2 x^2 / (4n^2 - 1)}{1} \right]_{n=1}^{\infty}.$$

The hypotheses of Theorem 5 are satisfied for $x = \sqrt{3}$.

actual error:
$$|T_n(0) - T|$$
 $|T_n(u) - T|$ $|T_n(u_{n+1}) - T|$ error bound (16)
 $n = 2$ 9.8×10^{-2} 1.8×10^{-3} 2.1×10^{-4} 7.5×10^{-3}
 $n = 3$ 3.5×10^{-2} 3.3×10^{-4} 3.1×10^{-5} 1.1×10^{-3}
 $n = 4$ 1.1×10^{-2} 7.0×10^{-5} 2.1×10^{-4}

Although the theorems in this paper can be applied to any type continued fraction, frequently the fixed points have complicated structures. The following formal procedure can be used to convert a power series into a "fixed point type" fraction.

Let
$$P(z) = 1 + a_1^{(1)}z + a_2^{(1)}z^2 + \cdots$$
. Write
$$P(z) = 1 + c_1 z^{k_1} (1 + b_{n_1}^{(1)} z^{n_1} + \cdots), \qquad k_1 \ge 1, \ n_1 \ge 1,$$
$$c_1 = d_{k_1}^{(1)}, \qquad k_1 = \min\{n: a_n^{(1)} \ne 0\}.$$

Then

$$P(z) = 1 + \frac{c_1 z^{k_1}}{1 + a_1^{(2)} z + a_2^{(2)} z^2 + \cdots}$$

$$= 1 + \frac{c_1 z^{k_1}}{1 + c_1 z^{k_1} - c_2 z^{k_2} (1 + b_{n_2}^{(2)} z^{n_2} + \cdots)}, \text{ etc.}$$

This gives rise to the fraction

(17)
$$1 - \underset{n=1}{\overset{\infty}{K}} \left(\frac{-c_n z^{k_n}}{1 + c_n z^{k_n}} \right),$$

with fixed points $u_n = c_n z^{kn}$, $v_n = 1$. Observe that (17) appears in the equivalent continued fraction expansion of

$$Q(z) = 1 + (2 - P(z))^{-1} = 1 + 1 + c_1 z^{k_1} + \cdots$$

A purely formal application to e^x , x = 1/10, gives

actual error:
$$|T_n(u_{n+1}) - e^{1/10}|$$

 $n = 2$ 5×10^{-7}
 $n = 3$ 1×10^{-8}

REFERENCES

- 1. L. R. Ford, Automorphic functions, McGraw-Hill, New York, 1929.
- 2. J. Gill, Attractive fixed points and continued fractions, Math. Scand. 33 (1973), 261-268.
- 3. ——, Infinite compositions of Möbius transformations, Trans. Amer. Math. Soc. 176 (1973), 479-487.
- 4. T. Hayden, Continued fraction approximation to functions, Numer. Math. 7 (1965), 292-309. MR 32 #3258.
- 5. A. N. Hovanskii, The application of continued fractions and their generalizations to problems in approximation theory, GITTL, Moscow, 1956; English transl., Noordhoff, Groningen, 1963. MR 27 #6058.
- 6. M. Mandell and A. Magnus, On convergence of sequences of linear fractional transformations, Math. Z. 115(1970), 11-17. MR 41 #3621.
- 7. P. Wynn, Converging factors for continued fractions. I, II, Numer. Math. 1 (1959), 272-320. MR 22 #6953.

DEPARTMENT OF MATHEMATICS, SOUTHERN COLORADO STATE COLLEGE, PUEBLO, COLORADO 81005