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THE USE OF ATTRACTIVE FIXED POINTS IN

ACCELERATING THE CONVERGENCE OF LIMIT-PERIODIC

CONTINUED FRACTIONS »

JOHN GILL

ABSTRACT.  A continued fraction can be interpreted as a composition

of Möbius transformations.   Frequently these transformations have power-

ful attractive fixed points which, under certain circumstances, can be

used as converging factors for the continued fraction.   The limit of a se-

quence of such fixed points can be employed as a constant converging

factor.

The continued fraction

(1)
a, a. a

12 n

b, + b-, + ■ • ■ + b    +
12 n

is said to be periodic in the limit provided  lim a   = a and  lim bn = b 4 0.

Set

'„(*) = «„/(&„ + *), n^1'

Txiz)=txiz),       Tn(z)=Tn_litniz)),      72 > 2,

and

lim tn(z) = t(z) = a/(b + z).

The 72th approximant of (1) is obtained by setting z = 0 in

a a

W T U) - r1
b, + ■ ■ ■ + b +z

1 n

(1) is called periodic if  t (z) = t(z),  n > 1;   and if t has two distinct fixed

points, zz  and v, where  |u|/|v| < 1, then one can write [l]
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(3) (T„(Z) -u)/ iTniz) -V)= iu/vY ÍZ  - u)/iz -v), 72 >  1.

Clearly, lim  T (z) = u fot z 4 v.

An exact truncation error for a fixed z follows easily from (3).   For  z =

0 and z = u this takes the forms

(4) T (0) - u = - uK"il - K)/il - K"+1),        72 > 1,
x n

and

(5) TjW-OaQ,        72 >1,

where  K = u/v.

Instant maximum acceleration of the periodic fraction occurs, therefore,

upon replacing z = 0 by  X = zz in (2).   Let \un\ and \vn\ be the fixed points

of \t  \, chosen so that \u \/\v \ < 1.  This paper is devoted to describing

certain continued fractions, periodic in the limit, whose convergence may be

speeded by setting z = u ot z = u        in  T (z). A geometrical approach

leads to a priori truncation error estimates of  T (u) and  T iu     A.  The

technique is similar to that used in  [2].

Previous articles associating the convergence behavior of continued

fractions with the behavior of the sequences {zz  | and \v  \ include   [2], [3]

and [6].  Papers concerned with converging factors and/or contraction maps

include [4]  and [7].

Computations involving u (or u       ) are accomplished as follows:   Let

Pn  and  Q     be the 72th partial numerator and 72th partial denominator of (1)

[5] so that T (0) = P„/Q„,   72 > 1. Let P* = P„ + uPn   ,, Q* = Q„ + uQn   .,

72 > 2.  Then  Tniu) = P*/Q*, n > 2.

The phenomena of instantaneous convergence is not restricted to pe-

riodic fractions.   Write  tn  in terms of its fixed points.

(6) tn^ = -UnVn^~('Un + vn) + Z^' " ^ 1'

Let un = u,  lim vn= v.  Then (1) becomes

(7) U1>1 UVl UV"

u + vx - u + v    -

Theorem 1.   Let  Tfí  be defined in accordance with (6).  // 0 < \u\ < \ v  \,

72 > 1  and \u\ < \v\, then  lim Tn(0) = lim Tniu) = Tn(u) = u.

Proof.   Theorem 1 [6] implies   JT (z)\  converges to a common limit for

all z 4 v.  T (u) s u, since   t (u) = u,  n > 1.
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Theorem 2.   Let T     be defined as before.    If u = v and 2|v   — V     ,| <

t» , then lim T (o) = lim Tn(u) = Tniu) = u.

Proof.   Theorem 1 [3]   guarantees the convergence of \T iz)\ to a com-

mon limit for every z.

It is well known that (1) converges provided  lim(|zz  \/\v  |) = |a|/|ti| < 1.

lim T (0) is near u it un ~ u, vn « v. The pattern of convergence is more

complicated when  zz = v or when  u 4 v, but  \u\ = \v\.  The first of these two

special cases occurs in Theorem 2.

In the three theorems that follow it is assumed that  u   —> u 4 0, v   —>
n r    '     n

v 4 0,   \u  I < |z7 I and  \u\ < \v\, even though the last two restrictions may

not always be necessary.   Although having a formidable appearance, the hy-

potheses are not too difficult to satisfy.

Set

(8) en = \un-u\.\un\/[\vn\-\un-u\],       72 >1,

andHn=\Un + l-Un\+en + 1.

Theorem 3.  //

(i)   \u    — u\  > \u    — u     A,v/|7! I I     72 Í2 + 11'

(i¡) Kl > 2|zz„ - u\,

(iü)  \vn\>\un-u\ + \un-u\ ■ \un\/[\un_x-u\ - \un-un_x\],

w K\ > l«»+i - »J + ««+1
are all satisfied, then lim T iu) = lim T (zz     ,) = lim T (0) = T, where

' n n     n + 1 72v/

\T-u  \<ex.  Furthermore,

n- 1

(9) 2í.n,,"/«'iltl"/+i""y-,'il-e/+i]'21
1

is an upper bound on both the errors  |Tn(zz) — T|   and |Tn_,(zzn) - T|.   The

monotonie divergence to 0 of the product is guaranteed by

(v)    \vn\2-\vn\i\uJ+2Hn) + H2n>0,       72 >1.

Proof of Theorem 3.  ¡Kj = |«„/f„| < 1,   |K| < 1  imply lim Tniz) =

lim T (0) = T foi z 4 v [6, Theorem l].   The boundary of the disk

C(eB, un) = \z: I z- un\ < cn I z - un - vn\ \ = \z: \ tjz) - uj < f„],

with tn defined by (8), and

(10) 0<Cn = (JK\<1

is a circle of Appollonius with respect to the points zz    and u   + v    (see
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the figure).   Its center, g  , and radius, R  , ate given by

(H) g   =u   -c2v (l -c2)-1,
6n n n   nx n '

and

The following conditions hold.

(1) tn(C(en, un)) = N(en, un) = \z: \z - «J < eJ,   « > 1.

(2) zz e C(fn, an),  72 > 1.

(3) />(<„, «JCCXe^,, «„_!),  »>2.

(1) follows from (8), (ii) and (10).

(2) is equivalent to  \g   — u\ < R   ,   n>l, which, by (11) and (12) can be

written

\*»-*-<&mb-c2-l\<cn\vH\il-c*)-i.

This inequality follows from

I»« - "I + c«kK! - cl]~ ' = c \v \u- c2)- »,1   n ' n'   n* n n'   n' n '

which is equivalent to (8), if we assume (ii).

(3) can be written \gn_    - «J + ffJ < Rn_ p   72 > 2,  which will follow if

\u„    i-u   \ + c2    Av      ,|(l-c2    A~l + (    <c      Av      ,|(1- c2    ,)_1.1     72-1 721 77-11     72-11 72-1 72—      72-1'     72 _ 1 ' 72-1

(i) and (ii) suffice to imply the equivalence of this last inequality to (iii).

C(en, un)
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The contractive property of the  t  's now come into play.   From (6) and

the figure

\u v  | • \z - z'\

I*.«-#.U0|--
U - (zz    + v  )\  • \z' - (u    + V  )\
' n n'l       I n n  <

{K+l-Un-Vn\-en+i)2

where  z and z' 6iV(e„+1, un+x).   (iv) insures \u%^ - un - vj > e„+1. Thus

the bound (9) is obtained,   (v) makes the factors of the product less than

one.   The limit of these factors as  / —>°o   is  |a|/|tz| < 1.

Let \Cn\ be any sequence of points such that £   £ N(e , u ).  Then

lim Tn- ¿O ■ lim TniW = T, and \Tn_ X(C„) - T\   is bounded by (9). An

obvious choice of \C !  is \u  !.^72 72

This completes the proof of Theorem 3.

The hypotheses of Theorem 3 can be altered slightly to produce an al-

ternate and possibly weaker form of (9).

Set

(13) tn=\un-u\,       n >1,

and

Z72   =   k + l-*J   +f72 + l' »£1«

Theorem 4.  //

(i)   0<fn<   \un\,     72 >1,

(")   \vn\ > l"J +V   "> 1,

(iii) kj^d + luje;1)/.'  »^1.
are zj/7 satisfied, then lim T («) = lim 7/ (zz     ,) = lim T (0) = T, where

72 72724-1 72v/ '

M ~ «, | < €,.   Furthermore,

77- 1

ni(i4) 2fnniiv7i[!-+1----i-i;+1]-

z's zztz upper bound on both the errors   \Tn(u) - T\   and \T      Au ) - T\.  The

monotonie divergence to 0  of the product is guaranteed by

(iv)   |w„r-|«'B|(|«fI|   +  2/fI)+/2>0,     72 >   1.

Remark.  If £n(j.)  and \un     - zzj < tn,  then  |tzj > 2(e„ + |aj) implies

(iii).
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Proof of Theorem 4. Conditions (1), (2), and (3) in the proof of Theorem

3 are satisfied assuming (i), (ii) and (iii) of Theorem 4. The details of proof

are much the same.

Example 1. [300(10~4" -l)/(20 + lQ1"*4")»]^, where un = 10(1 - 10"4*)z

—» zz = 10z and v   = v = - 30z.  The hypotheses of Theorem 3 are satisfied.

actual error:   \Tn(0) - T\ \Tn(u) - T\ \T„iun + ̂  ~ T\ error bound

N-2 1.4 1.4xl0-12 3.7 xlO-15 2.2 xlO-9

tV-'3 5x10"' 2.1xl0~15 ^*7.3xl0-14

Note that the error bound for \TÁu ) — T\  is given in the second row of

figures.

The hypotheses of Theorem 3 can be changed, in the following special

case without affecting the error bound (9).   Replace  b    by  1   in (1).

Set

(15) i„ - l"„K«w - «)/(« + 1).       «>1.

Theorem 5.  //

(i)  zz   and u4 — l,  —1   lie on a ray, and u  is between u    and — 1,

(ii) |«w-B|(i),

(iii)   |zzn  - u\   <   \u -  l|,

(ÍV)    l"„l  < I" +   M
are all satisfied, then lim Tn(u) = lim Tniun   A = lim Tn(0) = T, where

\T- ux\ < \ux\ ■ \ux-u\/\2ux -u+ 1|.

Furthermore,

72-1

do) 2ennii"/«; + i)i[|zz;+1 + n-f;+1]-
1

is an upper bound on both the errors  \T (u) — T\  and  \T      Au ) — T\.

Proof.   Observe that  v   =-u   - 1   and  v - - u - 1.
72 72

(1) follows from (i) and (iii).

(2) is satisfied if  \gn - u\ = Rn.  A brief computation shows that this

is equivalent to (15).  (ii) implies  \gn_l - u\  > \gn - u\, which guarantees

^n' "72^ C Cien-V un- ?• (iv) is equivalent to /V(e„, a„) C C(en, uj.  Hence

(3) is satisfied.

Example 2. Set F(x) = (x/Arctan x) - \, where [5, p. 116]
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x       x
Arctan x = —      —

72V

1+   3 + • • • +   272 + 1 +

An equivalence transformation on  F gives

\n2x2/(An2-\)
Fix)

1 »2=1

The hypotheses of Theorem 5 are satisfied for x = ^/3.

actual error:  \TniO) - T\        \Tn(u) - T\     \T„(un+1) - T\     error bound (16)

72=2       9.8 xlO-2        1.8 xlO"3        2.1 xlO-4 7.5 xlO-3

72=3       3.5 xlO"2       3.3xlO"4       3.1 x lu"5    ^ 1.1 x lo-3

72 = 4       l.lxlO-2       7.0xlO-5 2.1xl0-4

Although the theorems in this paper can be applied to any type con-

tinued fraction, frequently the fixed points have complicated structures.   The

following formal procedure can be used to convert a power series into a

"fixed point type" fraction.

Let P(z) = 1 + a[l)z + a^ z2 + ■ • • . Write

PU) = 1 + cxzklil + b^z"1 + ■■■),       kx > 1,  nx > 1,

c, = a1',        k, = min I72: «"Vol.
1*1 1 77

Then

Piz) = 1 +
c.z

1 + a[2)z + a22)z2 + ...

- 1 +

1 + C.Z   l-c,z   2(1+ b{2)z"2 + ...)
1 2 n -

This gives rise to the fraction

(17) 1 -    K
72=1

,*72

.1 + c

etc.

with fixed points  zzn = c z ",   V   m \.  Observe that (17) appears in the

equivalent continued fraction expansion of
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Qiz) = 1 + (2 - Piz))~ 1 = 1 + 1 + Cj zkl + ■ ■ ■ .

A purely formal application to  ex,  x = l/lO, gives

actual error:   l^„("„ + 1) - e1/10|

72= 2 5x 10" 7

72= 3 lx 10-8
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