THE USE OF ATTRACTIVE FIXED POINTS IN ACCELERATING THE CONVERGENCE OF LIMIT-PERIODIC CONTINUED FRACTIONS ${ }^{1}$

JOHN GILL

ABSTRACT. A continued fraction can be interpreted as a composition of Möbius transformations. Frequently these transformations have powerful attractive fixed points which, under certain circumstances, can be used as converging factors for the continued fraction. The limit of a sequence of such fixed points can be employed as a constant converging factor.

The continued fraction

$$
\begin{equation*}
\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\cdots+\frac{a_{n}}{b_{n}}+\cdots \tag{1}
\end{equation*}
$$

is said to be periodic in the limit provided $\lim a_{n}=a$ and $\lim b_{n}=b \neq 0$.
Set

$$
\begin{aligned}
& t_{n}(z)=a_{n} /\left(b_{n}+z\right), \quad n \geq 1 \\
& T_{1}(z)=t_{1}(z), \quad T_{n}(z)=T_{n-1}\left(t_{n}(z)\right), \quad n \geq 2
\end{aligned}
$$

and

$$
\lim t_{n}(z)=t(z)=a /(b+z)
$$

The nth approximant of (1) is obtained by setting $z=0$ in

$$
\begin{equation*}
T_{n}(z)=\frac{a_{1}}{b_{1}}+\cdots+\frac{a_{n}}{b_{n}+z} \tag{2}
\end{equation*}
$$

(1) is called periodic if $t_{n}(z) \equiv t(z), n \geq 1$; and if t has two distinct fixed points, u and v, where $|u| /|v|<1$, then one can write [1]

[^0]\[

$$
\begin{equation*}
\left(T_{n}(z)-u\right) /\left(T_{n}(z)-v\right)=(u / v)^{n}(z-u) /(z-v), \quad n \geq 1 \tag{3}
\end{equation*}
$$

\]

Clearly, $\lim T_{n}(z)=u$ for $z \neq v$.
An exact truncation error for a fixed z follows easily from (3). For $z=$ 0 and $z=u$ this takes the forms

$$
\begin{equation*}
T_{n}(0)-u=-u K^{n}(1-K) /\left(1-K^{n+1}\right), \quad n \geq 1 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{n}(u)-0 \equiv 0, \quad n \geq 1, \tag{5}
\end{equation*}
$$

where $K=u / v$.
Instant maximum acceleration of the periodic fraction occurs, therefore, upon replacing $z=0$ by $z=u$ in (2). Let $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ be the fixed points of $\left\{t_{n}\right\}$, chosen so that $\left|u_{n}\right| /\left|v_{n}\right|<1$. This paper is devoted to describing certain continued fractions, periodic in the limit, whose convergence may be speeded by setting $z=u$ or $z=u_{n+1}$ in $T_{n}(z)$. A geometrical approach leads to a priori truncation error estimates of $T_{n}(u)$ and $T_{n}\left(u_{n+1}\right)$. The technique is similar to that used in [2].

Previous articles associating the convergence behavior of continued fractions with the behavior of the sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ include [2], [3] and [6]. Papers concerned with converging factors and/or contraction maps include [4] and [7].

Computations involving u (or u_{n+1}) are accomplished as follows: Let P_{n} and Q_{n} be the nth partial numerator and nth partial denominator of (1)
[5] so that $T_{n}(0)=P_{n} / Q_{n}, n \geq 1$. Let $P_{n}^{*}=P_{n}+u P_{n-1}, Q_{n}^{*}=Q_{n}+u Q_{n-1}$, $n \geq 2$. Then $T_{n}(u)=P_{n}^{*} / Q_{n}^{*}, n \geq 2$.

The phenomena of instantaneous convergence is not restricted to periodic fractions. Write t_{n} in terms of its fixed points.

$$
\begin{equation*}
t_{n}(z)=-u_{n} v_{n} /\left[-\left(u_{n}+v_{n}\right)+z\right], \quad n \geq 1 . \tag{6}
\end{equation*}
$$

Let $u_{n} \equiv u$, $\lim v_{n}=v$. Then (1) becomes

$$
\begin{equation*}
\frac{u v_{1}}{u+v_{1}}-\frac{u v_{2}}{u+v_{2}}-\cdots-\frac{u v_{n}}{u+v_{n}}-\cdots \tag{7}
\end{equation*}
$$

Theorem 1. Let T_{n} be defined in accordance with (6). If $0<|u|<\left|v_{n}\right|$, $n \geq 1$ and $|u|<|v|$, then $\lim T_{n}(0)=\lim T_{n}(u)=T_{n}(u) \equiv u$.

Proof. Theorem 1 [6] implies $\left\{T_{n}(z)\right\}$ converges to a common limit for all $z \neq v . T_{n}(u) \equiv u$, since $t_{n}(u)=u, n \geq 1$.

Theorem 2. Let T_{n} be defined as before. If $u=v$ and $\Sigma\left|v_{n}-v_{n+1}\right|<$ ∞, then $\lim T_{n}(0)=\lim T_{n}(u)=T_{n}(u) \equiv u$.

Proof. Theorem $1[3]$ guarantees the convergence of $\left\{T_{n}(z)\right\}$ to a common limit for every z.

It is well known that (1) converges provided $\lim \left(\left|u_{n}\right| /\left|v_{n}\right|\right)=|u| /|v|<1$. $\lim T_{n}(0)$ is near u if $u_{n} \approx u, v_{n} \approx v$. The pattern of convergence is more complicated when $u=v$ or when $u \neq v$, but $|u|=|v|$. The first of these two special cases occurs in Theorem 2.

In the three theorems that follow it is assumed that $u_{n} \rightarrow u \neq 0, v_{n} \rightarrow$ $v \neq 0,\left|u_{n}\right|<\left|v_{n}\right|$ and $|u|<|\nu|$, even though the last two restrictions may not always be necessary. Although having a formidable appearance, the hypotheses are not too difficult to satisfy.

Set

$$
\begin{equation*}
\epsilon_{n}=\left|u_{n}-u\right| \cdot\left|u_{n}\right| /\left[\left|v_{n}\right|-\left|u_{n}-u\right|\right], \quad n \geq 1 \tag{8}
\end{equation*}
$$

and $H_{n}=\left|u_{n+1}-u_{n}\right|+\epsilon_{n+1}$.
Theorem 3. If
(i) $\left|u_{n}-u\right|>\left|u_{n}-u_{n+1}\right|$,
(ii) $\left|v_{n}\right|>2\left|u_{n}-u\right|$,
(iii) $\left|v_{n}\right| \geq\left|u_{n}-u\right|+\left|u_{n}-u\right| \cdot\left|u_{n}\right| /\left[\left|u_{n-1}-u\right|-\left|u_{n}-u_{n-1}\right|\right]$,
(iv) $\left|v_{n}\right|>\left|u_{n+1}-u_{n}\right|+\epsilon_{n+1}$
are all satisfied, then $\lim T_{n}(u)=\lim T_{n}\left(u_{n+1}\right)=\lim T_{n}(0)=T$, where $\left|T-u_{1}\right| \leq \epsilon_{1}$. Furthermore,

$$
\begin{equation*}
2 \epsilon_{n} \prod_{1}^{n-1}\left\{\left|u_{j} v_{j}\right|\left[\left|u_{j+1}-u_{j}-v_{j}\right|-\epsilon_{j+1}\right]-2\right\} \tag{9}
\end{equation*}
$$

is an upper bound on both the errors $\left|T_{n}(u)-T\right|$ and $\left|T_{n-1}\left(u_{n}\right)-T\right|$. The monotonic divergence to 0 of the product is guaranteed by
(v) $\left|v_{n}\right|^{2}-\left|v_{n}\right|\left(\left|u_{n}\right|+2 H_{n}\right)+H_{n}^{2}>0, \quad n \geq 1$.

Proof of Theorem 3. $\left|K_{n}\right|=\left|u_{n} / v_{n}\right|<1,|K|<1$ imply $\lim T_{n}(z)=$ $\lim T_{n}(0)=T$ for $z \neq v$ [6, Theorem 1]. The boundary of the disk

$$
C\left(\epsilon_{n}, u_{n}\right)=\left\{z:\left|z-u_{n}\right| \leq c_{n}\left|z-u_{n}-v_{n}\right|\right\}=\left\{z:\left|t_{n}(z)-u_{n}\right| \leq \epsilon_{n}\right\}
$$

with ϵ_{n} defined by (8), and

$$
\begin{equation*}
0<c_{n}=\epsilon_{n} /\left|u_{n}\right|<1 \tag{10}
\end{equation*}
$$

is a circle of Appollonius with respect to the points u_{n} and $u_{n}+v_{n}$ (see
the figure). Its center, g_{n}, and radius, R_{n}, are given by

$$
\begin{equation*}
g_{n}=u_{n}-c_{n}^{2} v_{n}\left(1-c_{n}^{2}\right)^{-1} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{n}=c_{n}\left|v_{n}\right|\left(1-c_{n}^{2}\right)^{-1} \tag{12}
\end{equation*}
$$

The following conditions hold.
(1) $t_{n}\left(C\left(\epsilon_{n}, u_{n}\right)\right)=N\left(\epsilon_{n}, u_{n}\right)=\left\{z:\left|z-u_{n}\right| \leq \epsilon_{n}\right\}, n \geq 1$.
(2) $u \in C\left(\epsilon_{n}, u_{n}\right), n \geq 1$.
(3) $N\left(\epsilon_{n}, u_{n}\right) \subset C\left(\epsilon_{n_{-1}}, u_{n_{-1}}\right), n \geq 2$.
(1) follows from (8), (ii) and (10).
(2) is equivalent to $\left|g_{n}-u\right| \leq R_{n}, n \geq 1$, which, by (11) and (12) can be written

$$
\left|u_{n}-u-c_{n}^{2} v_{n}\left(1-c_{n}^{2}\right)^{-1}\right| \leq c_{n}\left|v_{n}\right|\left(1-c_{n}^{2}\right)-1
$$

This inequality follows from

$$
\left|u_{n}-u\right|+c_{n}^{2}\left|v_{n}\right|\left(1-c_{n}^{2}\right)^{-1}=c_{n}\left|v_{n}\right|\left(1-c_{n}^{2}\right)^{-1}
$$

which is equivalent to (8), if we assume (ii).
(3) can be written $\left|g_{n-1}-u_{n}\right|+\epsilon_{n} \leq R_{n-1}, n \geq 2$, which will follow if

$$
\left|u_{n-1}-u_{n}\right|+c_{n-1}^{2}\left|v_{n-1}\right|\left(1-c_{n-1}^{2}\right)^{-1}+\epsilon_{n} \leq c_{n-1}\left|v_{n-1}\right|\left(1-c_{n-1}^{2}\right)^{-1}
$$

(i) and (ii) suffice to imply the equivalence of this last inequality to (iii).

The contractive property of the t_{n} 's now come into play. From (6) and the figure

$$
\begin{aligned}
\left|t_{n}(z)-t_{n}\left(z^{\prime}\right)\right| & =\frac{\left|u_{n} v_{n}\right| \cdot\left|z-z^{\prime}\right|}{\left|z-\left(u_{n}+v_{n}\right)\right| \cdot\left|z^{\prime}-\left(u_{n}+v_{n}\right)\right|} \\
& \leq \frac{\left|u_{n} v_{n}\right|}{\left(\left|u_{n+1}-u_{n}-v_{n}\right|-\epsilon_{n+1}\right)^{2}} \cdot\left|z-z^{\prime}\right|
\end{aligned}
$$

where z and $z^{\prime} \in N\left(\epsilon_{n+1}, u_{n+1}\right)$. (iv) insures $\left|u_{n+1}-u_{n}-v_{n}\right|>\epsilon_{n+1}$. Thus the bound (9) is obtained. (v) makes the factors of the product less than one. The limit of these factors as $j \rightarrow \infty$ is $|u| /|v|<1$.

Let $\left\{\zeta_{n}\right\}$ be any sequence of points such that $\zeta_{n} \in N\left(\epsilon_{n}, u_{n}\right)$. Then $\lim T_{n-1}\left(\zeta_{n}\right)=\lim T_{n}(0)=T$, and $\left|T_{n-1}\left(\zeta_{n}\right)-T\right|$ is bounded by (9). An obvious choice of $\left\{\zeta_{n}\right\}$ is $\left\{u_{n}\right\}$.

This completes the proof of Theorem 3.
The hypotheses of Theorem 3 can be altered slightly to produce an alternate and possibly weaker form of (9).

Set

$$
\begin{equation*}
\epsilon_{n}=\left|u_{n}-u\right|, \quad n \geq 1, \tag{13}
\end{equation*}
$$

and

$$
l_{n}=\left|u_{n+1}-u_{n}\right|+\epsilon_{n+1}, \quad n \geq 1
$$

Theorem 4. If
(i) $0<\epsilon_{n}<\left|u_{n}\right|, \quad n \geq 1$,
(ii) $\left|v_{n}\right|>\left|u_{n}\right|+\epsilon_{n}, \quad n \geq 1$,
(iii) $\left|v_{n}\right| \geq\left(1+\left|u_{n}\right| \epsilon_{n}^{-1}\right) l_{n}, \quad n \geq 1$,
are all satisfied, then $\lim T_{n}(u)=\lim T_{n}\left(u_{n+1}\right)=\lim T_{n}(0)=T$, where $\left|T-u_{1}\right| \leq \epsilon_{1}$. Furthermore,

$$
\begin{equation*}
2 \epsilon_{n} \prod_{1}^{n-1}\left\{\left|u_{j} v_{j}\right|\left[\left|u_{j+1}-u_{j}-v_{j}\right|-\epsilon_{j+1}\right]-2\right\} \tag{14}
\end{equation*}
$$

is an upper bound on both the errors $\left|T_{n}(u)-T\right|$ and $\left|T_{n-1}\left(u_{n}\right)-T\right|$. The monotonic divergence to 0 of the product is guaranteed by
(iv) $\left|v_{n}\right|^{2}-\left|v_{n}\right|\left(\left|u_{n}\right|+2 l_{n}\right)+l_{n}^{2}>0, n \geq 1$.

Remark. If $\epsilon_{n}(\downarrow)$ and $\left|u_{n+1}-u_{n}\right|<\epsilon_{n}$, then $\left|v_{n}\right|>2\left(\epsilon_{n}+\left|u_{n}\right|\right)$ implies (iii).

Proof of Theorem 4. Conditions (1), (2), and (3) in the proof of Theorem 3 are satisfied assuming (i), (ii) and (iii) of Theorem 4. The details of proof are much the same.

Example 1. $\left[300\left(10^{-4 n}-1\right) /\left(20+10^{1-4 n}\right) i\right]_{n=1}^{\infty}$, where $u_{n}=10\left(1-10^{-4 n}\right)_{i}$ $\rightarrow u=10 i$ and $v_{n} \equiv v=-30 i$. The hypotheses of Theorem 3 are satisfied.

actual error:	$\left\|T_{n}(0)-T\right\|$	$\left\|T_{n}(u)-T\right\|$	$\left\|T_{n}\left(u_{n+1}\right)-T\right\|$	error bound
$N=2$	1.4	1.4×10^{-12}	3.7×10^{-15}	2.2×10^{-9}
$N=3$	5×10^{-1}	2.1×10^{-15}		7.3×10^{-14}

Note that the error bound for $\left|T_{2}\left(u_{3}\right)-T\right|$ is given in the second row of figures.

The hypotheses of Theorem 3 can be changed, in the following special case without affecting the error bound (9). Replace b_{n} by 1 in (1).

Set

$$
\begin{equation*}
\epsilon_{n}=\left|u_{n}\right|\left(u_{n}-u\right) /(u+1), \quad n \geq 1 \tag{15}
\end{equation*}
$$

Theorem 5. If
(i) u_{n} and $u \neq-1,-1$ lie on a ray, and u is between u_{n} and -1 ,
(ii) $\left|u_{n}-u\right|(\downarrow)$,
(iii) $\left|u_{n}-u\right|<|u-1|$,
(iv) $\left|u_{n}\right|<|u+1|$
are all satisfied, then $\lim T_{n}(u)=\lim T_{n}\left(u_{n+1}\right)=\lim T_{n}(0)=T$, where

$$
\left|T-u_{1}\right| \leq\left|u_{1}\right| \cdot\left|u_{1}-u\right| /\left|2 u_{1}-u+1\right| .
$$

Furthermore,

$$
\begin{equation*}
2 \epsilon_{n} \prod_{1}^{n-1}\left\{\left|u_{j}\left(u_{j}+1\right)\right|\left[\left|u_{j+1}+1\right|-\epsilon_{j+1}\right]-2\right\} \tag{16}
\end{equation*}
$$

is an upper bound on both the errors $\left|T_{n}(u)-T\right|$ and $\left|T_{n-1}\left(u_{n}\right)-T\right|$.
Proof. Observe that $v_{n}=-u_{n}-1$ and $v=-u-1$.
(1) follows from (i) and (iii).
(2) is satisfied if $\left|g_{n}-u\right|=R_{n}$. A brief computation shows that this is equivalent to (15). (ii) implies $\left|g_{n-1}-u\right| \geq\left|g_{n}-u\right|$, which guarantees $C\left(\epsilon_{n}, u_{n}\right) \subset C\left(\epsilon_{n-1}, u_{n-1}\right)$. (iv) is equivalent to $N\left(\epsilon_{n}, u_{n}\right) \subset C\left(\epsilon_{n}, u_{n}\right)$. Hence (3) is satisfied.

Example 2. Set $F(x)=(x / \operatorname{Arctan} x)-1$, where [5, p. 116]

$$
\operatorname{Arctan} x=\frac{x}{1}+\frac{x^{2}}{3}+\cdots+\frac{n^{2} x^{2}}{2 n+1}+\cdots
$$

An equivalence transformation on F gives

$$
F(x)=\left[\frac{n^{2} x^{2} /\left(4 n^{2}-1\right)}{1}\right]_{n=1}^{\infty}
$$

The hypotheses of Theorem 5 are satisfied for $x=\sqrt{3}$.

Although the theorems in this paper can be applied to any type continued fraction, frequently the fixed points have complicated structures. The following formal procedure can be used to convert a power series into a "fixed point type" fraction.

$$
\begin{aligned}
& \text { Let } P(z)=1+a_{1}^{(1)} z+a_{2}^{(1)} z^{2}+\cdots . \text { Write } \\
& \qquad \begin{aligned}
P(z)=1+c_{1} z^{k_{1}}\left(1+b_{n_{1}}^{(1)} z^{n_{1}}+\cdots\right), \quad k_{1} \geq 1, n_{1} \geq 1 \\
c_{1}=d_{k}^{(1)}, \quad k_{1}=\min \left\{n: a_{n}^{(1)} \neq 0\right\}
\end{aligned}
\end{aligned}
$$

Then

$$
\begin{aligned}
P(z) & =1+\frac{c_{1} z^{k_{1}}}{1+a_{1}^{(2)} z+a_{2}^{(2)} z^{2}+\cdots} \\
& \left.=1+\frac{c_{1} z^{k_{1}}}{1+c_{1} z^{k}-c_{2} z^{k}{ }^{k}\left(1+b_{n_{2}}^{(2)}{ }^{n} 2\right.}+\cdots\right)
\end{aligned}, \text { etc. }
$$

This gives rise to the fraction

$$
\begin{equation*}
1-\bigcap_{n=1}^{\infty}\left(\frac{-c_{n} z^{k} n}{1+c_{n} z^{k_{n}}}\right), \tag{17}
\end{equation*}
$$

with fixed points $u_{n}=c_{n} z^{k_{n}}, v_{n} \equiv 1$. Observe that (17) appears in the equivalent continued fraction expansion of

$$
Q(z)=1+(2-P(z))^{-1}=1+1+c_{1} z^{k_{1}}+\cdots
$$

A purely formal application to $e^{x}, x=1 / 10$, gives

$$
\begin{aligned}
& \text { actual error: } \\
& \qquad \begin{array}{cc}
T_{n}\left(u_{n+1}\right)-e^{1 / 10} \mid \\
n=2 & 5 \times 10^{-7} \\
n=3 & 1 \times 10^{-8}
\end{array}
\end{aligned}
$$

REFERENCES

1. L. R. Ford, Automorphic functions, McGraw-Hill, New York, 1929.
2. J. Gill, Attractive fixed points and continued fractions, Math. Scand. 33 (1973), 261-268.
3. ——, Infinite compositions of Möbius transformations, Trans. Amer. Math. Soc. 176 (1973), 479-487.
4. T. Hayden, Continued fraction approximation to functions, Numer. Math. 7 (1965), 292-309. MR 32 \#3258.
5. A. N. Hovanskiĭ, The application of continued fractions and their generalizations to problems in approximation theory, GITTL, Moscow, 1956; English transl., Noordhoff, Groningen, 1963. MR 27 \#6058.
6. M. Mandell and A. Magnus, On convergence of sequences of linear fractional transformations, Math. Z. 115(1970), 11-17. MR 41 \#3621.
7. P. Wynn, Converging factors for continued fractions.I, II, Numer. Math. 1 (1959), 272-320. MR 22 \#6953.

DEPARTMENT OF MATHEMATICS, SOUTHERN COLORADO STATE COLLEGE, PUEBLO, COLORADO 81005

[^0]: Received by the editors August 9, 1973.
 AMS (MOS) subject classifications (1970). Primary 40A15; Secondary 40A25.
 Key words and phrases. Limit-periodic continued fractions, converging factors, circles of Appollonius.
 ${ }^{1}$ This research was supported in part by AFOSR grant 70-1922.

