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A GENERALIZED SHILOV BOUNDARY

AND ANALYTIC STRUCTURE1

RICHARD F. BASENER

ABSTRACT.  A generalization of the concept of the Shilov boundary of

a uniform algebra is introduced.   This makes it possible to formulate and

prove several-dimensional analogues of certain well-known results which

guarantee the existence of one-dimensional analytic structure when a func-

tion in the algebra is finite-to-one over a suitable part of its spectrum.

A major problem in the study of uniform algebras is to find interesting

sufficient conditions for the existence of analytic structure in their maximal

ideal spaces; see, e.g., [6, Chapter 3 and §30]. With one notable exception

(a result due to Gleason [3], or see [6, Theorem 15.2]), most of these results

are one dimensional.  In this paper we indicate how one kind of condition ([7,

Theorems 10.7 and 11.2], which were derived from Bishop's paper [2]) can be

generalized to yield several-dimensional analytic structure.   First we must

define a generalization of the Shilov boundary of a uniform algebra.

Notation.  A  will always denote a uniform algebra defined on the compact

Hausdorff space X with maximal ideal space  M.  dQA  is the usual Shilov

boundary of A.  Let

An = ttfv->f„)\fv-'->fneM>

so that each  F = (fx, • • • , f ) £ A" maps  M to C",   and  FÍM)  is the joint

spectrum of /,,•••,/ . If K is a compact subset of M, let

A „ = i/e C(K) | / is a uniform limit on  K of functions from Ai.

If F e A", let

V(F) = \x£ M\ Fix) = 01

be the A-variety corresponding to  F  and note that  yip)  is  A-convex, i.e.,

the maximal ideal space of  Ay,,,,  is  yip).
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If  Y is a topological space, and if Z C Y, then d   Z,  or simply dZ,

will denote the topological boundary of  Z relative to   Y.   For  z £ C"  we let

\z\ = (S"=1 \z.\  )   , the usual Euclidean norm of z,  and then we define

Bn={z£Cn\\z\ < 1\, S"=\z£C"\\z\ = l\.

Finally,  772,   will denote  ^-dimensional Lebesgue measure; its domain will

always be clear from the context.

Definition, dnA = Closure [ Uî<?0(A V(F))| F £ An\\.

(At this point the reader may wish to look ahead to the statements of

Theorems 1 and 2 to see the direction in which our development will proceed.)

Lemma 1.   Let x £ K Ç M, K closed.   Let F £ A"  and suppose that

x £ VÍF).   Then Vg 6 AV(Py

\gix)\ <max{|g(y)| \y£[dK n V(F)] U [dnA n V(F) n K]\.

Proof.  This follows at once from the preceding definition and the usual

local maximum modulus principle [7, Theorem 9.3] applied to Av.py

Corollary 1. Let K be a compact A-convex subset of M\d A. Then

d (A.,) CdK.
n      K    —

Proof. Suppose that the Corollary is false, so that d (A^)  £ dK.   Then

there exists G = ig x, ■ ■ ■ , g ) £ (nK)n such that the interior of K meets the

Shilov boundary of  iAK)v(GY Consequently there is an  h £ A  and ape

int(K) n V(G)  such that \hip)\ > 1,   but \h\ < 1  on dK n V(G). Now choose

e > 0  such that  \h\ < 1  on \x £ 3k\ |g.(x)| < e,   1 < 7 < 72!.  Let fx, ■ ■ ■ , f   eA

be chosen so that f kp) = 0, while \f. - g \ < e on  K,  1 < 7 < n.  Then \h\ < 1

on dK n Vifx, ■ ■ ■ , fn),  p £ Vifx, •'•»/„).  and  \hip)\ > 1. This contradicts

the local maximum modulus principle of Lemma 1, so the Corollary is estab-

lished.

Lemma 2.  (Cf. [7, Lemma 11.1].) Let n > 0  and suppose that d  _1ACX.

Let F £ A"  and let W be a component of C"\FÍX).   Then either FÍM) O W =

0   or FÍM) nw = W.

Proof. Suppose 0 4 FÍM) nW 4 W.  Then   3x £ M  such that z1 = Fix) £

d[FiM)] n W.  Choose z° £ w\fÍM)  such that  |z° - zX| < a= min{|z - z°| |z

£ FiX)\.   Wlog, z° = 0, z1 =(1, 0, •■• , 0);  so a> 1.

Let F = (/j, • • • , /n). Since 0 ft FÍM), 3hx, ■■■ , hn£ A such that

S"=1 h.f.= \ (see [7, Lemma 8.1]). Let G = (/2, ■■■ , f) £ A""1. Since

x e v(g),  we have
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|¿j(x)| < max I A. I «=     max     |A,|
V(G)nèn_\A V(G)nX

=     max    •-=     max    -< 1/min \P\ = ya < 1.

V(G)nX l/jl      V(G)nX \F\ '        X

But also

1-2"     h i x) fix)
'■»-  ;;<ï   ■■•

This contradiction shows that we must originally have had  FÍM) n W = 0 or

F(M) nw = W.

Theorem 1.   Ler 72 > 0 a«¿ /ei 5     ,ACX.   Ler Ff/1" «tzíÍ suppose that
n—l      — rr

If| = 1  072 X,   that 0 e F(Al),   and that  3 5"' CT szzcfc that  ttz0     ,(s') > 0 and

VA e S     3   í7 unique   q £ X with Fiq) = A.   T/>era

V£ e B"  3  a wTzz'oae x £ M with  Fix) = ¿j

V/ e A, / o F_1   z's holomorphic on Bn.

Proof.  The case  72 = 1   is Theorem 10.7 in [7],   so we assume that 72 > 1.

Let z £ Bn. Since  7722     AS ) > 0,  it follows that for some complex line  L =

\z + CMC e C! (where A £ C"\t0}) through z we have mxis' n L) > 0.  For

simplicity assume that A = (l, 0, • • • , O)  and that z = 0,  and let G =

if2, • • •  , f ).  One readily verifies that fAyir-x is a function in the uniform

algebra AV(G.  to which the  72 = 1  result can be applied.  (Note that since

0 £ FÍM),  Lemma 2 implies that FÍM) 3 Bn,  so that we are justified in as-

suming that  z = 0.) We can thus conclude that Vz   £ Bn D L,   3 precisely one

x' £ VÍG)  with  F(x') = z.  Thus  Vz 6 B",   3   a unique  x 6 M  with Fix) = z.

Fix p,   0 < p < 1.  Let

K = \x£M\ \F(x)\ <p\.

By Corollary 1, d   _j(A„) C dK = {x e M\ |F(x)| = p).   Since  F  is one-to-one

on  K,  the result for 72 = 1  implies that \/f £ A, / o p~    is holomorphic on the

intersection of any complex line with {z £ C"| \z\ < p\.   Since  p was arbitrary,

it follows that V/ £ A,  / o F~    is holomorphic on  B".

Lemma 3. (Cf. [l, Lemma 3].)  Let 72 > 0 and let d    .A C X.  Let F e A",

let W be a component of C"\F(X),   let z £ W,   and suppose that J  is a com-

ponent of F~ (z).   Then for each neighborhood G of J,   FÍU)  is a neighbor-

hood of z; given such an 0,   3 a compact A-convex neighborhood N of }

such that N Ç 0 and z 4 FidN).
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Proof.  Choose compact sets  /',  /" such that  F    (z) = ]' U /",• /' O /"

= 0, and / Ç /' Ç 0 (cf. [6, Lemma 8.13Í).   K = F~\z)  is A-convex, so 3 g

£ AK such that g = 0  on  /,   g = l  on  /    (by the Shilov idempotent theorem

[7, Theorem 8.6]).  Choose   h £ A with  max„ \h - g\ <lA and define

l/ = |*eS| |Mx)| <Mlu!xe Al| \hix)\ >V4\,

so that  U is a neighborhood of  F~ (z).  Choose e > 0  such that \x £ M\ \Fix)

- z\ <e}Ç U.  Let

N ={x£ M\ \F(x) - z\ <e, \h(x)\ <%).

Then N is a compact A-convex neighborhood of /  and N C G. If x e d/V,

either |F(x) - z\ - í or  |/>(x)| = %,  so that z i FÍOn).  Finally,  N Ç M\dn_xA,

so Corollary 1 implies that d  _i(A   ) C <9/v.  Since  z £ FÍN)\FÍdN),   Lemma 2

implies that  F(n) is a neighborhood of  z.

Theorem 2,  Ler tz > 0 arzí^ /ez d     ,A C X.   Ler Fe/1" «72(5? /ef W èe a
77—1        —

component of Cn\FÍX).  Assume that  FiM)n W 4 0.  Suppose   3   W' C W such

that m9 iW1) > 0 «Tzii Vz e w',

#F_  (z) = inumber of x £ M wz'z'/j  F(x) = z)

z's finite.   For I = 1, 2, ■ ■ • ,   /ei

W, = {ze W|#F-I(z) = /¡.

T/7e?2   3   a positive integer k such that

(ii) U   =1 W •  zs a proper analytic subvariety of W;

(iii)  F: F~ (W) —> W  z's a (branched) analytic cover iin the sense of

[5, p. 101]).

Consequently,   3   a sheaf 0 of germs of functions on F~ (W)  such that

ÍF~ iW), 6)  is an analytic space of pure dimension n and Vf £ A,  f is holo-

morphic on F'    (W) (for definitions, see [5, pp.  147—155]).

Proof.  We shall assume that  72 > 1,  as the  tz = 1   case is essentially

Theorem 11.2 in [7].   (if X  is not metric, any difficulty with the measurability

}f sets needed in the proof of Theorem 11.2 can be dealt with by the kind of

idea developed in Assertion 1 below.) For  / = 1, 2, • • ■ ,   let   V. = U=i  ^ ■•

Assertion 1.   // T  is a relatively closed subset of W  and if Vz£T,

#F~ (z)  is finite, then V/,   Vl n T  is relatively closed and hence  W¡ n T  is

measurable.
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Proof of Assertion 1. Suppose  z £ T,  z   £ V, O T,  z   —> z.  Let m =rr n I '      n

#F    (z) < oo.   By Lemma 3   3  disjoint compact sets  N,, • • • , N     such that

FÍN )  is a neighborhood of  z for ;' = 1, • • • , m.  Thus for  72  large,  772 <

#F~liz )< I,  so z £ V,.
n   —    ' l

Now let

Biz; 8) = ¡Ce C"| \z - C\ <8\,      zeC", S > 0;

Z, = {ze w\W8> 0 3 KC B(z; 8) n V, with  K measurable

and 7722n(r<)>OS,        /> 0.

(It is clear that the set Z,  is closed relative to  W.   Thus the next assertion

shows that either Z, = 0 or Z. = W.)

Assertion 2.  V/ > 0,  Z, is open and Z, C V,.

Proof of Assertion 2.  Let z   e Z,. Choose S > 0 such that Biz  ; S)

Ç W,  and let  K be a closed subset of ß(z°; ¿5) n V, such that m2niK) > 0.

Assertion 1 implies that   K O W. is measurable for each 7,  so   3&,   1 < k < /,

such that m, (W, n K) > 0.

Fix z e B(z°; 5).   It is not hard to show that  3 A £ C"\{0i   such that if

L = \z + CMC £ C!, then t?z2(L O Wk n K) > 0. For simplicity let z = 0, A =

(1,0,-.., 0).  Let G = (/2, ••-,/„)  and define:

W = component of C\fxiX n V(G)) which contains 0;

K=iCeC|(c;, 0, .... 0)ew/tn/cj.

Then /1|1/(G\ e ^v(G)  an<^ ^s  ^'t:o'^  over  ^1  so tne one-dimensional version

of Theorem 2 shows that VA £ W, #lifx)~ (A)] < k. (Compare Assertion 3 in

the proof of Theorem 11.2 in [7]; the "k" there is the same as our "k" as

may be verified from its definition on p. 65.) Thus #F~ (O) < k;  so Vz £

Biz0; 8), ttF'Kz) < k,  or ß(z°; 8) Ç Vk,  so ß(z°; S) Ç Z¿. This concludes

the proof of Assertion 2.

We are ready to prove (i). Wlog   W   is closed. Since  W =U7=1 ^ n ^/'

Assertion 1 implies that each W O W. is measurable, so there is a positive

integer k such that 77z2 (w' n W, ) > 0. Then Z, 7^0,   so the connectedness

of W and Assertion 2 imply that Zfe = W; thus W Ç Vfe =   (J *=1 Wr Note

also that if  I < k, the same argument implies that we must have 7tz2 iW,) = 0.

Assertion 3,  // z° £ Wfc,   35 > 0 wz'í¿> ß(z°; S) Ç Wfe szzc¿ í^«í /or eac/7

component N of F~ ißiz ; 5)) we have:

F\N:  N —> B(z  ; 8)  is a homeomorphism;

Vg£ A,  g °(F\N)~     is holomorphic on  B(z°; 8).
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Thus it follows that F : F~ (W.) —* IV,   is a k-sheeted covering map.

Proof of Assertion 3.  Fix z    e IV,,  and let F~ iz ) = {xp • • • , x, 1. Let

N .,■••, N,   be disjoint closed neighborhoods of x., • • • , x,.  Lemma 3 im-

plies that FÍN )  is a neighborhood of z    for each /.   Choose  8 > 0 such that

S(z°; 5) = \z £ C"| |* - z°\ < 8\ Ç ff' n (fi *X/Y.)J.

Since  W = V,,  we have that for each z e ß(z  ; ¿5)  and for each /',    3  a unique

x £ N. with F(x) = z.  Let M. = N. n F-I(ß(z°; 5)),   1 < ; < k.  Since M . is
; 7       ; -    o ~        . ;

compact and  F  maps  M . one-to-one onto  Biz ; 8),  the restriction of  F  to M.

is a homeomorphism onto ß(z ; 5).  Let X. = \x £ M \ |F(x) - z \ = ¿5! = dM-.

Corollary 1 implies that dn_xAM   C X.. Fix j and let N = m\x ..  Theorem 1

now shows that Vg £ A,  g o (p\   )~     is holomorphic on ß(z  ; 5).   This com-

pletes the proof of Assertion 3.

To prove (ii), define  p . : Wk —* M,  1 < ;' < k,  by requiring that  F~ iz) =

ipj(z), •• • , p.(z)l,   z £ W,,  the  p. being otherwise arbitrary.  For each /£A,

define

A[/](z)
( IT(/(p/z))-/(P.(z))),  ier.

o,      26 r\f.

Assertion 3 shows that  V/ e A,   A[/]   is holomorphic on the open set W,,
k>

and the remark preceding Assertion 3 shows that  W,   is dense in  W.   If z    e

W\W,, then #F~ (z ) < k and Lemma 3 implies that for each / e A,

lim A[/](2) = 0.
z->jz°; zelV/j

Thus we may apply Rado 's theorem (the  72 = 1  case is Theorem 10.6 in [7])

to conclude that V/ £ A, A[/]  is holomorphic on  IV.  Since the functions in A

separate points on M,

k- 1

(J   W,= W\W   =  fi  \z£W\A[f](z) = 0\.
;=1 feA

Thus  (J . ~j IV. is a proper analytic subvariety of IV.

Now we have almost all the information needed to conclude that

F: F~ (W) —» IV is a ¿-sheeted (branched) analytic covering of W in the

sense of [5, p. 101]. In fact, the only conditions in this definition of analytic
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cover which we have not already verified are that the restriction of F to

F~l(W)  is a proper map and that  F_1(lv\Ufel} W)  is dense in  F~liw).   The

first condition is an immediate consequence of the fact that  F  is defined and

continuous on all of the compact set M,  and the second condition follows

from an application of Lemma 3 as in Assertion 3.

The fact that an analytic cover is an analytic space may be found in [4,

Theorem 32]. If / £ A, Assertion 3 and Definition 4 in [5, p. 101] now imply

that the restriction of / to  F~ (iV)  is holomorphic.

Theorem 3.   Let n > 0  and let d     , A C X.   Ler  F £ A"  and let W  be a
72—1        —

component of C"\f(X).  Assume that  Vz £ W,  F    iz)  is at most countable.

Then   3   «72 open dense subset  U of F~ iW)  and a sheaf G of germs of func-

tions on  U such that ill, 0)   is an n-dimensional complex analytic manifold

and V/ £ A, / is holomorphic on  U.

Proof. The proof is virtually identical with that of the Theorem in [l],

so we shall not repeat it here. (Simply substitute Theorem 1, Lemma 2 and

Lemma 3 above for Lemmas 1, 2 and 3 in the proof of the Theorem in [l].)
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