A GENERALIZED SHILOV BOUNDARY AND ANALYTIC STRUCTURE¹

RICHARD F. BASENER

ABSTRACT. A generalization of the concept of the Shilov boundary of a uniform algebra is introduced. This makes it possible to formulate and prove several-dimensional analogues of certain well-known results which guarantee the existence of one-dimensional analytic structure when a function in the algebra is finite-to-one over a suitable part of its spectrum.

A major problem in the study of uniform algebras is to find interesting sufficient conditions for the existence of analytic structure in their maximal ideal spaces; see, e.g., [6, Chapter 3 and §30]. With one notable exception (a result due to Gleason [3], or see [6, Theorem 15.2]), most of these results are one dimensional. In this paper we indicate how one kind of condition ([7, Theorems 10.7 and 11.2], which were derived from Bishop's paper [2]) can be generalized to yield several-dimensional analytic structure. First we must define a generalization of the Shilov boundary of a uniform algebra.

Notation. A will always denote a uniform algebra defined on the compact Hausdorff space X with maximal ideal space M. $\partial_0 A$ is the usual Shilov boundary of A. Let

$$A^{n} = \{(f_{1}, \dots, f_{n}) \mid f_{1}, \dots, f_{n} \in A\},\$$

so that each $F = (f_1, \dots, f_n) \in A^n$ maps M to \mathbb{C}^n , and F(M) is the joint spectrum of f_1, \dots, f_n . If K is a compact subset of M, let

 $A_{\kappa} = \{f \in C(K) \mid f \text{ is a uniform limit on } K \text{ of functions from } A\}.$

If $F \in A^n$, let

$$V(F) = \{ x \in M \mid F(x) = 0 \}$$

be the A-variety corresponding to F and note that V(F) is A-convex, i.e., the maximal ideal space of $A_{V(F)}$ is V(F).

Received by the editors August 15, 1973.

AMS (MOS) subject classifications (1970). Primary 46J10, 46J15.

Key words and phrases. Analyticity, maximal ideal space, Shilov boundary.

¹ This research was supported in part by NSF grant GP-30671.

If Y is a topological space, and if $Z \subseteq Y$, then $\partial_Y Z$, or simply ∂Z , will denote the topological boundary of Z relative to Y. For $z \in \mathbb{C}^n$ we let $|z| = (\sum_{i=1}^n |z_i|^2)^{\frac{1}{2}}$, the usual Euclidean norm of z, and then we define

$$B^{n} = \{z \in \mathbb{C}^{n} \mid |z| < 1\}, \qquad S^{n} = \{z \in \mathbb{C}^{n} \mid |z| = 1\}.$$

Finally, m_k will denote k-dimensional Lebesgue measure; its domain will always be clear from the context.

Definition. $\partial_n A = \text{Closure} \left[\bigcup \{ \partial_0 (A_{V(F)}) | F \in A^n \} \right].$

(At this point the reader may wish to look ahead to the statements of Theorems 1 and 2 to see the direction in which our development will proceed.)

Lemma 1. Let $x \in K \subseteq M$, K closed. Let $F \in A^n$ and suppose that $x \in V(F)$. Then $\forall g \in A_{V(F)}$,

 $|g(x)| \leq \max\{|g(y)| \mid y \in [\partial K \cap V(F)] \cup [\partial_n A \cap V(F) \cap K]\}.$

Proof. This follows at once from the preceding definition and the usual local maximum modulus principle [7, Theorem 9.3] applied to $A_{V(F)}$.

Corollary 1. Let K be a compact A-convex subset of $M \setminus \partial_n A$. Then $\partial_n (A_k) \subseteq \partial K$.

Proof. Suppose that the Corollary is false, so that $\partial_n(A_K) \not\subseteq \partial K$. Then there exists $G = (g_1, \dots, g_n) \in (A_K)^n$ such that the interior of K meets the Shilov boundary of $(A_K)_{V(G)}$. Consequently there is an $h \in A$ and a $p \in$ int $(K) \cap V(G)$ such that |h(p)| > 1, but |h| < 1 on $\partial K \cap V(G)$. Now choose $\epsilon > 0$ such that |h| < 1 on $\{x \in \partial K \mid |g_j(x)| < \epsilon, 1 \le j \le n\}$. Let $f_1, \dots, f_n \in A$ be chosen so that $f_j(p) = 0$, while $|f_j - g_j| < \epsilon$ on K, $1 \le j \le n$. Then |h| < 1on $\partial K \cap V(f_1, \dots, f_n)$, $p \in V(f_1, \dots, f_n)$, and |h(p)| > 1. This contradicts the local maximum modulus principle of Lemma 1, so the Corollary is established.

Lemma 2. (Cf. [7, Lemma 11.1].) Let n > 0 and suppose that $\partial_{n-1}A \subseteq X$. Let $F \in A^n$ and let W be a component of $\mathbb{C}^n \setminus F(X)$. Then either $F(M) \cap W = \emptyset$ or $F(M) \cap W = W$.

Proof. Suppose $\emptyset \neq F(M) \cap W \neq W$. Then $\exists x \in M$ such that $z^1 = F(x) \in \partial[F(M)] \cap W$. Choose $z^0 \in W \setminus F(M)$ such that $|z^0 - z^1| < \alpha = \min\{|z - z^0| | z \in F(X)\}$. Wlog, $z^0 = 0$, $z^1 = (1, 0, \dots, 0)$; so $\alpha > 1$.

Let $F = (f_1, \dots, f_n)$. Since $0 \notin F(M)$, $\exists h_1, \dots, h_n \in A$ such that $\sum_{j=1}^n h_j f_j = 1$ (see [7, Lemma 8.1]). Let $G = (f_2, \dots, f_n) \in A^{n-1}$. Since $x \in V(G)$, we have

R. F. BASENER

$$|b_1(x)| \le \max_{V(G)\cap\hat{\vartheta}_{n-1}A} |b_1| = \max_{V(G)\cap X} |b_1|$$

= $\max_{V(G)\cap X} \frac{1}{|f_1|} = \max_{V(G)\cap X} \frac{1}{|F|} \le 1/\min_X |F| = \frac{1}{\alpha} < 1.$

But also

$$h_1(x) = \frac{1 - \sum_{j=2}^n h_j(x) f_j(x)}{f_1(x)} = 1.$$

This contradiction shows that we must originally have had $F(M) \cap W = \emptyset$ or $F(M) \cap W = W$.

Theorem 1. Let n > 0 and let $\partial_{n-1}A \subseteq X$. Let $F \in A^n$ and suppose that |F| = 1 on X, that $0 \in F(M)$, and that $\exists S' \subseteq S^n$ such that $m_{2n-1}(S') > 0$ and $\forall \lambda \in S' \exists$ a unique $q \in X$ with $F(q) = \lambda$. Then $\forall \zeta \in B^n \exists$ a unique $x \in M$ with $F(x) = \zeta$; $\forall f \in A, f \circ F^{-1}$ is holomorphic on B^n .

Proof. The case n = 1 is Theorem 10.7 in [7], so we assume that n > 1. Let $z \in B^n$. Since $m_{2n-1}(S') > 0$, it follows that for some complex line $L = \{z + \zeta \lambda | \zeta \in \mathbb{C}\}$ (where $\lambda \in \mathbb{C}^n \setminus \{0\}$) through z we have $m_1(S' \cap L) > 0$. For simplicity assume that $\lambda = (1, 0, \dots, 0)$ and that z = 0, and let $G = (f_2, \dots, f_n)$. One readily verifies that $f_1|_{V(G)}$ is a function in the uniform algebra $A_{V(G)}$ to which the n = 1 result can be applied. (Note that since $0 \in F(M)$, Lemma 2 implies that $F(M) \supseteq B^n$, so that we are justified in assuming that z = 0.) We can thus conclude that $\forall z' \in B^n \cap L$, \exists precisely one $x' \in V(G)$ with F(x') = z'. Thus $\forall z \in B^n$, \exists a unique $x \in M$ with F(x) = z. Fix ρ , $0 < \rho < 1$. Let

$$K = \{x \in M \mid |F(x)| \leq \rho\}.$$

By Corollary 1, $\partial_{n-1}(A_K) \subseteq \partial K = \{x \in M | |F(x)| = \rho\}$. Since F is one-to-one on K, the result for n = 1 implies that $\forall f \in A$, $f \circ F^{-1}$ is holomorphic on the intersection of any complex line with $\{z \in \mathbb{C}^n | |z| < \rho\}$. Since ρ was arbitrary, it follows that $\forall f \in A$, $f \circ F^{-1}$ is holomorphic on B^n .

Lemma 3. (Cf. [1, Lemma 3].) Let n > 0 and let $\partial_{n-1}A \subseteq X$. Let $F \in A^n$, let W be a component of $\mathbb{C}^n \setminus F(X)$, let $z \in W$, and suppose that J is a component of $F^{-1}(z)$. Then for each neighborhood \mathbb{O} of J, $F(\mathbb{O})$ is a neighborhood of z; given such an \mathbb{O} , \exists a compact A-convex neighborhood N of J such that $N \subseteq \mathbb{O}$ and $z \notin F(\partial N)$.

100

Proof. Choose compact sets J', J'' such that $F^{-1}(z) = J' \cup J''$, $J' \cap J'' = \emptyset$, and $J \subseteq J' \subseteq \emptyset$ (cf. [6, Lemma 8.13]). $K = F^{-1}(z)$ is A-convex, so $\exists g \in A_K$ such that g = 0 on J', g = 1 on J'' (by the Shilov idempotent theorem [7, Theorem 8.6]). Choose $h \in A$ with $\max_K |h - g| < \frac{1}{4}$ and define

$$U = \{x \in \mathfrak{O} \mid |b(x)| < \frac{1}{4}\} \cup \{x \in M \mid |b(x)| > \frac{3}{4}\},\$$

so that U is a neighborhood of $F^{-1}(z)$. Choose $\epsilon > 0$ such that $\{x \in M \mid |F(x) - z| \le \epsilon\} \subseteq U$. Let

$$N = \{x \in M \mid |F(x) - z| \le \epsilon, |h(x)| \le \frac{1}{4}\}.$$

Then N is a compact A-convex neighborhood of J and $N \subseteq \mathbb{O}$. If $x \in \partial N$, either $|F(x) - z| = \epsilon$ or $|b(x)| = \frac{1}{4}$, so that $z \notin F(\partial N)$. Finally, $N \subseteq M \setminus \partial_{n-1}A$, so Corollary 1 implies that $\partial_{n-1}(A_N) \subseteq \partial N$. Since $z \in F(N) \setminus F(\partial N)$, Lemma 2 implies that F(N) is a neighborhood of z.

Theorem 2. Let n > 0 and let $\partial_{n-1}A \subseteq X$. Let $F \in A^n$ and let W be a component of $\mathbb{C}^n \setminus F(X)$. Assume that $F(M) \cap W \neq \emptyset$. Suppose $\exists W' \subseteq W$ such that $m_{2m}(W') > 0$ and $\forall z \in W'$,

$$\#F^{-1}(z) = (number of x \in M with F(x) = z)$$

is finite. For $l = 1, 2, \cdots$, let

$$W_{l} = \{z \in W \mid \#F^{-1}(z) = l\}.$$

Then 3 a positive integer k such that

(i) $W = \bigcup_{i=1}^{k} W_i;$

(ii) $\bigcup_{j=1}^{k-1} W_j$ is a proper analytic subvariety of W;

(iii) $F: F^{-1}(W) \to W$ is a (branched) analytic cover (in the sense of [5, p. 101]).

Consequently, \exists a sheaf \mathfrak{O} of germs of functions on $F^{-1}(W)$ such that $(F^{-1}(W), \mathfrak{O})$ is an analytic space of pure dimension n and $\forall f \in A$, f is holomorphic on $F^{-1}(W)$ (for definitions, see [5, pp. 147–155]).

Proof. We shall assume that n > 1, as the n = 1 case is essentially Theorem 11.2 in [7]. (If X is not metric, any difficulty with the measurability of sets needed in the proof of Theorem 11.2 can be dealt with by the kind of idea developed in Assertion 1 below.) For $l = 1, 2, \dots$, let $V_l = \bigcup_{i=1}^l W_i$.

Assertion 1. If T is a relatively closed subset of W and if $\forall z \in T$, # $F^{-1}(z)$ is finite, then $\forall l$, $V_l \cap T$ is relatively closed and hence $W_l \cap T$ is measurable. **Proof of Assertion 1.** Suppose $z \in T$, $z_n \in V_l \cap T$, $z_n \to z$. Let $m = \#F^{-1}(z) < \infty$. By Lemma 3 \exists disjoint compact sets N_1, \dots, N_m such that $F(N_j)$ is a neighborhood of z for $j = 1, \dots, m$. Thus for n large, $m \leq \#F^{-1}(z_n) \leq l$, so $z \in V_l$.

Now let

~ .

$$B(z; \delta) = \{ \zeta \in \mathbb{C}^n | | z - \zeta | < \delta \}, \qquad z \in \mathbb{C}^n, \ \delta > 0; \\ Z_l = \{ z \in W | \forall \delta > 0 \exists K \subseteq B(z; \delta) \cap V_l \text{ with } K \text{ measurable} \\ \text{and } m_{2n}(K) > 0 \}, \qquad l > 0. \end{cases}$$

(It is clear that the set Z_l is closed relative to W. Thus the next assertion shows that either $Z_l = \emptyset$ or $Z_l = W$.)

Assertion 2. $\forall l > 0, Z_l$ is open and $Z_l \subseteq V_l$.

Proof of Assertion 2. Let $z^0 \in Z_l$. Choose $\delta > 0$ such that $B(z^0; \delta) \subseteq W$, and let K be a closed subset of $B(z^0; \delta) \cap V_l$ such that $m_{2n}(K) > 0$. Assertion 1 implies that $K \cap W_j$ is measurable for each j, so $\exists k, 1 \le k \le l$, such that $m_{2n}(W_k \cap K) > 0$.

Fix $z \in B(z^0; \delta)$. It is not hard to show that $\exists \lambda \in \mathbb{C}^n \setminus \{0\}$ such that if $L = \{z + \zeta \lambda | \zeta \in \mathbb{C}\}$, then $m_2(L \cap W_k \cap K) > 0$. For simplicity let $z = 0, \lambda = (1, 0, \dots, 0)$. Let $G = (f_2, \dots, f_n)$ and define:

$$\widetilde{W} = \text{component of } \mathbb{C} \setminus f_1(X \cap V(G)) \text{ which contains } 0;$$
$$\widetilde{K} = \{ \zeta \in \mathbb{C} | (\zeta, 0, \dots, 0) \in W_k \cap K \}.$$

Then $f_1|_{V(G)} \in A_{V(G)}$ and is k-to-1 over \widetilde{K} , so the one-dimensional version of Theorem 2 shows that $\forall \lambda \in \widetilde{W}$, $\#[(f_1)^{-1}(\lambda)] \leq k$. (Compare Assertion 3 in the proof of Theorem 11.2 in [7]; the "k" there is the same as our "k" as may be verified from its definition on p. 65.) Thus $\#F^{-1}(0) \leq k$; so $\forall z \in$ $B(z^0; \delta)$, $\#F^{-1}(z) \leq k$, or $B(z^0; \delta) \subseteq V_k$, so $B(z^0; \delta) \subseteq Z_l$. This concludes the proof of Assertion 2.

We are ready to prove (i). Wlog W' is closed. Since $W' = \bigcup_{l=1}^{\infty} W' \cap W_l$, Assertion 1 implies that each $W' \cap W_l$ is measurable, so there is a positive integer k such that $m_{2n}(W' \cap W_k) > 0$. Then $Z_k \neq \emptyset$, so the connectedness of W and Assertion 2 imply that $Z_k = W$; thus $W \subseteq V_k = \bigcup_{l=1}^k W_l$. Note also that if l < k, the same argument implies that we must have $m_{2n}(W_l) = 0$.

Assertion 3. If $z^0 \in W_k$, $\exists \delta > 0$ with $B(z^0; \delta) \subseteq W_k$ such that for each component N of $F^{-1}(B(z^0; \delta))$ we have:

$$F|_{N}: N \to B(z^{0}; \delta)$$
 is a homeomorphism;
 $\forall g \in A, g \circ (F|_{N})^{-1}$ is holomorphic on $B(z^{0}; \delta)$

Thus it follows that $F: F^{-1}(W_k) \to W_k$ is a k-sheeted covering map.

Proof of Assertion 3. Fix $z^0 \in W_k^{\sim}$, and let $F^{-1}(z^0) = \{x_1, \dots, x_k\}$. Let N_1, \dots, N_k be disjoint closed neighborhoods of x_1, \dots, x_k . Lemma 3 implies that $F(N_i)$ is a neighborhood of z^0 for each *j*. Choose $\delta > 0$ such that

$$\overline{B}(z^{0}; \delta) = \{z \in \mathbb{C}^{n} | |z - z^{0}| \leq \delta\} \subseteq \mathbb{W} \cap \left(\bigcap_{j=1}^{k} F(N_{j})\right).$$

Since $W = V_k$, we have that for each $z \in \overline{B}(z^0; \delta)$ and for each j, \exists a unique $x \in N_j$ with F(x) = z. Let $M_j = N_j \cap F^{-1}(\overline{B}(z^0; \delta))$, $1 \le j \le k$. Since M_j is compact and F maps M_j one-to-one onto $\overline{B}(z^0; \delta)$, the restriction of F to M_j is a homeomorphism onto $\overline{B}(z^0; \delta)$. Let $X_j = \{x \in M_j \mid |F(x) - z^0| = \delta\} = \partial M_j$. Corollary 1 implies that $\partial_{n-1}A_{M_j} \subseteq X_j$. Fix j and let $N = M_j \setminus X_j$. Theorem 1 now shows that $\forall g \in A, g \circ (F|_N)^{-1}$ is holomorphic on $\overline{B}(z^0; \delta)$. This completes the proof of Assertion 3.

To prove (ii), define $p_j: W_k \to M$, $1 \le j \le k$, by requiring that $F^{-1}(z) = \{p_1(z), \dots, p_k(z)\}, z \in W_k$, the p_j being otherwise arbitrary. For each $f \in A$, define

$$\Delta[f](z) = \begin{cases} \prod_{i \neq j} (f(p_i(z)) - f(p_j(z))), & z \in W_k, \\ 0, & z \in W \setminus W_k. \end{cases}$$

Assertion 3 shows that $\forall f \in A$, $\Delta[f]$ is holomorphic on the open set W_k , and the remark preceding Assertion 3 shows that W_k is dense in W. If $z^0 \in W \setminus W_k$, then $\#F^{-1}(z^0) < k$ and Lemma 3 implies that for each $f \in A$,

$$\lim_{z\to z^0;\ z\in W_k}\Delta[f](z)=0.$$

Thus we may apply Rado's theorem (the n = 1 case is Theorem 10.6 in [7]) to conclude that $\forall f \in A$, $\Delta[f]$ is holomorphic on W. Since the functions in A separate points on M,

$$\bigcup_{j=1}^{k-1} W_j = W \setminus W_k = \bigcap_{f \in A} \{z \in W \mid \Delta[f](z) = 0\}.$$

Thus $\bigcup_{i=1}^{k-1} W_i$ is a proper analytic subvariety of W.

Now we have almost all the information needed to conclude that $F: F^{-1}(W) \to W$ is a k-sheeted (branched) analytic covering of W in the sense of [5, p. 101]. In fact, the only conditions in this definition of analytic

R. F. BASENER

cover which we have not already verified are that the restriction of F to $F^{-1}(W)$ is a proper map and that $F^{-1}(W \setminus \bigcup_{j=1}^{k-1} W_j)$ is dense in $F^{-1}(W)$. The first condition is an immediate consequence of the fact that F is defined and continuous on all of the compact set M, and the second condition follows from an application of Lemma 3 as in Assertion 3.

The fact that an analytic cover is an analytic space may be found in [4, Theorem 32]. If $f \in A$, Assertion 3 and Definition 4 in [5, p. 101] now imply that the restriction of f to $F^{-1}(W)$ is holomorphic.

Theorem 3. Let n > 0 and let $\partial_{n-1}A \subseteq X$. Let $F \in A^n$ and let W be a component of $\mathbb{C}^n \setminus F(X)$. Assume that $\forall z \in W$, $F^{-1}(z)$ is at most countable. Then \exists an open dense subset U of $F^{-1}(W)$ and a sheaf \mathfrak{O} of germs of functions on U such that (U, \mathfrak{O}) is an n-dimensional complex analytic manifold and $\forall f \in A$, f is holomorphic on U.

Proof. The proof is virtually identical with that of the Theorem in [1], so we shall not repeat it here. (Simply substitute Theorem 1, Lemma 2 and Lemma 3 above for Lemmas 1, 2 and 3 in the proof of the Theorem in [1].)

REFERENCES

1. R. F. Basener, A condition for analytic structure, Proc. Amer. Math. Soc. 36 (1972), 156-160. MR 46 #7903.

2. E. Bishop, Holomorphic completions, analytic continuation, and the interpolation of semi-norms, Ann. of Math. (2) 78 (1963), 468-500. MR 27 #4958.

3. A. M. Gleason, Finitely generated ideals in Banach algebras, J. Math. Mech. 13 (1964), 125-132. MR 28 #2458.

4. H. Grauert and R. Remmert, Komplexe Räume, Math. Ann. 136 (1958), 245-318. MR 21 #2063.

5. R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1965. MR 31 #4927.

6. E. L. Stout, The theory of uniform algebras, Bogden & Quigley, Tarrytownon-Hudson, N. Y., 1971.

7. J. Wermer, Banach algebras and several complex variables, Markham, Chicago, Ill., 1971. MR 46 #672.

DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, NEW HAVEN, CONNECTICUT 06520

Current address: Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015