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DIRECT PRODUCT DECOMPOSITION

OF ALTERNATIVE RINGS

HYO CHUL MYUNG AND LUIS R. JIMENEZ

ABSTRACT. It is shown that any alternative ring A   equipped with

the relation < , defined by x < y  if and only if xy = x^, is isomorphic to

a direct product of alternative division rings if and only if the relation <

is a partial order on A   such that A   is hyperatomic and orthogonally com-

plete.

The result stated in the abstract was first proved by Abian [l] for the

commutative associative case.  Later, Chacron [4] extended this result to an

arbitrary associative ring.  While Chacron proved this by using the axiom of

choice or a subdirect sum representation of any associative ring without non-

zero nilpotent elements, Abian [2] recently gave another method to prove the

result of Chacron without using the axiom of choice.  It is the aim of this

paper to extend the above result for the associative case to any alternative

ring.

1.   Preliminaries.   An alternative ring is a nonassociative ring A   satis-

fying x y = x(xy)  and yx   = (yx)x for all x, y e A.  In terms of the associa-

tes (x, y, z) = (xy)z - x(yz), this is to say (x, x, y) = (y, x, x) = 0.   Thus an

associative ring is alternative, and there exist alternative rings without non-

zero nilpotent elements which are not associative.   For this, see, for example,

[3] or [6].

We recall some of the well-known properties in an alternative ring A  on

which our proofs will be based.   Artin's theorem in A   says that

(1) any subring of A  generated by two elements is associative.

Moufang identities are

(2) {axa)y = a[x(ay)],

(3) a(xy)a = (ax){ya)    for all x, y € A.

Also, the following generalized version of Artin's theorem is proved in [3]:
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,£. if {a, b, c) = 0 , the subring of A   generated

by a, b, c is associative.

If A  is an alternative ring without nonzero nilpotent elements, the follow-

ing, in view of Artin's theorem, can be shown to be exactly the same as the

associative case [2J.

(5) 0    for x e A  if and only if x = 0.

(6) xy = 0    for x, y e A  if and only if yx = 0.

(7)

For any elements x, y,  t 6 A, xy = xt

if and only if yx = tx.

Hence, in particular, if xy = x    then xy = yx.

2. Main section.  In what follows, A   always stands for an alternative

ring without nonzero nilpotent elements.  First we prove a sequence of lem-

mas which are essential for the main result.

Lemma 1.   Let A  be an alternative ring.   The relation defined by  x < y

if and only if xy = x    is a partial order on A   if and only if A  has no non-

zero nilpotent elements.

Proof.  Suppose A  has no nonzero nilpotent elements.   Then clearly <

is.reflexive.  If x < y  and y < x, that is, xy = x    and yx = y , then we get

(x - y)    =0  and so x = y.  To show transitivity of <, let x < y  and y < z.

We first show

io\ 2 2        4(8) x zx = xzx    = x .

Since xy = x    and yz = y  , we have

x2zx = x2(zx) = (xy)(zx) = x(yz)x    (by (3))

= xy2x = {xy)2     (by (7))

= *4.

Similarly, we show xzx   = x .  Using (8) we compute

(xzx — x')2 = xzx zx — xzx   — x**zx + x° = x^zx  — x   — x^zx + x    = 0

and so

(9) xzx = x  .

Finally, from (8) and (9), we derive (xz — x )    = x-'z - x   - x z + x   = 0,

and so xz = x    or x < z.  Thus < is transitive and is a partial order on A.
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The converse is easy and the same as in the associative case.

Henceforth any order in A  will mean the relation defined by  x < y if

and only if xy = x .  The following lemma is proved by Hentzel [5J.  For con-

venience, we duplicate it here.

Lemma 2.   Let x, y, z  be any elements of A.   Then (xy)z = 0   if and only

if x(yz) = 0.

Proof.   By repeated use of (1) and (3), if (xy)z - 0  then

(x • yz)^ = x[yz • (x • yz • x)  . yz] = x[yz • (xy • zx) • yz]

= x[(yz • xy)(zx • yz)] = x [(yz • xy)(z • xy • z)] = 0

and so x(yz) = 0.  The converse is similar.

Lemma 3. (i) For every x, a € A, if x a = 0  then xa = 0.

(ii)  If x < y for x, y € A, then (x, y, A) = 0.  Hence for every element

u 6 A, the subring of A  generated by x, y, u  is associative.

(iii)  If ab < c for a, b, c € A, then the subring generated by a, b, c is

associative.

Proof,   (i)   In view of (1), the proof is the same as in the associative

case.

(ii) Since xy = x ,

0 = (xy — x2)u = [x(y — x)]u = x[(y — x)u\     (Lemma 2)

= x(yu — xu) = x(yu) — x(xu) = x(yu) — x2u.

Hence (xy)u = x u = x(yu)   and (x, y, u) = 0  for all  u £ A, as desired.

(iii) In view of (4), it suffices to show (a, b, c) - 0.  Since (ab)c =

(ab)  , using Lemma 2 we have

0 = (ab)(c - ab) = a • b(c - ab) = a(bc - bab) = a(bc) - (ab)2,

and so (a, b, c) = 0.

Lemma 4.   For every element x, y, u, v £ A, x < y  and u < v imply

■xu < y v.

Proof.  We first show that for every  v e A, x < y implies  xv < yv  and

vx < vy.  Since xy = xx, by Lemma 3(ii), (xy)v = x(yv) = x(xv).  So by (7) we

get (yv)x = xvx and yvxv = xvxv = (xv)  , so xv < yv; the other case is

similar.  Since xu < yu  and yu < yv, by transitivity (Lemma 1) we have that

xu < yv.
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Lemma 5.   Let e be an idempotent in A.   Then:

(i)   ex = xe < x for every x £ A.

(ii)  e is central in A; that is,  e  commutes with every element in A   and

(e,A,A) = 0.

Proof,  (i) is trivial.  For (ii), one easily checks (ex - exe)    = (xe — exe)

= 0   and so  ex = xe. Now, for every element x, y £ A,

0 = \_e(ex — x)](ey)    (Lemma 2)

= e[(ex)(ye) - x(ey)]    (Moufang)

= e[e(xy)e - x(ey)] = e(xy) - e[x(ey)]     (Moufang)

= e(xy) — (exe)y = e(xy) — (ex)y,

as desired.

Lemma 6.   Let a, s be elements in A  such that as = a.  Then we have

(i) asa = a;

(ii) as and sa are idempotents and as = sa;

(iii)  if x < as for x £ A, then x  is an idempotent;

(iv) (a2, s, A) = 0.

Proof, (i)   One easily checks (asa —a)   =0.

(ii) Using (i), we get (sa)   = (sa)(sa) = s(asa) = sa, and similarly

7 .7
(as)   = as.  This then implies (sa — as)    = 0  and so sa = as.

(iii)  If x < as, then  x   < x(as)  and x(as) < x by Lemma 5(i)   since as

is an idempotent.  Hence x   < x by Lemma 1; that is,  x   = x .  Using this,

we get (x   - x )    =0   and so  x3 = x  , which means  x < x     and so, by Lem-

ma 1, x    = x.

(iv) Let y be any element in A.  From (2) and (6), we get 0 = (a, as, y)

= (a, s, y)a = a(a, s, y).   Also, a known identity for A   says that (a , s,  y)

= a(a, s, y) + (a, s, y)a (see [6, p. 129]). Hence (a  , s, y) = 0, as desired.

Following Abian [l], we have

Definition.   A nonzero element a in A  is called a hyperatom in A if and

only if, for every element x in A,

(i)  x < a implies x = 0  or x = a, and

(ii) ax 4 0  implies a(xs) = a for some element s in A.

We now prove the following crucial lemma.

Lemma 7.  Let x be a nonzero element in A. If a < x for some nonzero

hyperatom a  in A, then there exists an idempotent hyperatom  e such that

ex^O.
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Proof.  Since o isa hyperatom, by definition there exists an element

s £ A   with a s = a.  Then by Lemma 6(ii), as = sa is an idempotent.  Hence

it suffices to show as  is a hyperatom and (as)x 4 0.  Let y < as for y £ A.

Then y   = y(as) and ya < asa = a by Lemmas 4 and 6(i). Thus ya = 0 or ya = ß. If

y« = 0, 0 = (y«)s = y(fls) = y     by Lemma 2 and so  y = 0.  Suppose now

ya = a.  Then we get (a, s, y) = 0   since y is an idempotent by Lemma 6(iii).

Thus y = y   = y(as) = (ya)s = as.  Hence y = 0 or y = as. Now suppose

(as)y 4 0  for y £ A.  Then  a(sy) /0  by Lemma 2 and so  a (sy) 4 0, but

then a (sy) = (a s)y = ay 4 0  by Lemma 6(iv).  Since  a is a hyperatom, there

exists an  r £ A   such that a(yr) = a, and hence (a s)(yr) = asa = a ssa;

0 = (a2s)(yr - sa) = a2[s(yr - sa)]    (Lemma 2),

and so

0 = a[s(yr — sa)] = (as)(yr — sa).

Hence (as)(yr) = (as)    = as, and this proves as is a hyperatom.   Finally

if we let  e = as, then

ex = (sfl)x = s(ax)    (by Lemma 3(ii))

= sa 2 = (síz)fl = asa = a ^ 0

by Lemmas 5(ii) and 6(i).

Lemma 8.  The set E = ie. |.£. o/ a/Z idempotent hyperatoms in A  is

an orthogonal set in A, and each  e.A   is an alternative division ring such

that e.A C\e.A = 0  if i 4 i-

Since each   e.A  has no zero divisors, noting that each   e. is central

and that if every nonzero element is an alternative ring has aright inverse

it has also a left inverse [6, p. 131], the proof is the same as in the asso-

ciative case.

As in the associative case, we make the following

Definition.  Let A  be an alternative ring.

(i)  A  is called hyperatomic if for every nonzero  element r in A   there

exists a hyperatom a in A   such that a < r.

(ii) A  is called orthogonally complete if sup S  exists for every orthog-

onal subset S of A.

The following lemma is an easy consequence of Lemma 7 (also see

[1] and [4]).

Lemma 9.   Let A   be hyperatomic and E= \e.}.£    be the set of idempo-

tent hyperatoms in A.   Then we have
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(i)  for every a £ A, sup(e.fl)   exists and a = sup(e.a);

(ii)  the function f defined by f(a) = (e.a)    .  is a monomorphism from

A  into a direct product of the alternative division rings  e.A.

For the proof of the main result, we need one more lemma.

Lemma 10. Let \x. \. . be a subset of the alternative ring A such that

sup.x. exists. Then for every element a £ A, sup.(ax.) exists and further-

more,

a sup x.= sup (ax.).

i i

Proof.  Let u be any upper bound of \ax. }.£..  We proceed as in [2].

Since ax . < u,i —   '

(10) u(ax¡) = (ax.)2    for every i € I.

By Lemma 4, a sup x    is an upper bound of \ax ■ ie/  and so

(11) la sup x Max .) = (ax )2    for every  i £ I.

From (10) and (11) we have

u(ax .) = la sup x . J (ax .)    for every i el.
%•      \        ;"»     ii ■     r

\       i /

Thus

x? = (sup x .Jx .  + u(ax .) — la sup x Max .).

Since ax. < u for every  i £ I, from Lemma   3(iii) and 3(ii) applied to x.,

sup.x., a, we have

x? at (sup xAxj + (ua)xi -    (a sup x . \a x .

=   sup x¿ + ua-la sup x.)«lx.= x. sup x¿ + ua - (a sup x.Jal.

Thus

x . .< sup x . + ua — [a sup x . ¡a

i '      i        '

for every i £ 1, which means

(sup x. \   = (sup x .)   sup x. + ua — la sup x \a  ,
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which implies

(12) (sup xMua) =ísup x.\(a sup x\a.

Setting x = sup.x., from (12) we get x(ua) = xaxa.  Applying Lemma 2 to this,

0 = x(ua — axa) = x • (u — ax)a = x(u — ax) • a = (xu)a — xaxa.

Hence (xu)a = x(ua) = (xa)     and a(xu) = (ax)u = (ax)     or ax < z¿.   Since  ax

is an upper bound of \ax.}-€,, this proves  ax = a sup . x. = sup .(ax.), as

desired.

Remark.  Lemmas 1, 4, and 10 generalize the results of Abian [2] to the

alternative case.   Also, our present results are extended to right alternative

rings of characteristic 4 2,since Kleinfeld [7] shows that right alternative

rings of characteristic 4 2  without nonzero nilpotent elements are alternative.

We are now prepared to prove the main result.

Theorem. Any alternative ring A equipped with the relation <, defined

by x < y if and only if xy = x , is isomorphic to a direct product of alterna-

tive division rings if and only if the relation < is a partial order on A such

that A   is hyperatomic and orthogonally complete.

The proof of the Theorem is a consequence of Lemmas 9, 8, and 10, and

thus the same as in the associative case (see [l] and [4]).

The following example shows that Lemma 1 and the Theorem do not hold

for Jordan rings.

Example.  Let Q  be the real quaternions with the standard basis 1, i, j,

k.  Then Q under the product a • b = l/£ab+ ba) becomes a Jordan ring Q

without nonzero nilpotent elements.  One easily checks in  Q     that i + / < 2z

and 2z < 2z + ;' hold but i + ; < 2z + / does not.  Thus the relation < is not

a partial order on  Q  .   Also, Q     is a Jordan division ring in the sense that

U   = 2R   — R   2 is invertible on Q    for every  a 4 0   in Q  , where R    is the

right multiplication in  Q     by  a.
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