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A CHARACTERIZATION OF STRICTLY CONVEX

BANACH SPACES

D. STRAWTHER AND S. GUDDER

ABSTRACT.    A very short proof is given for Petryshyn's characteri-

zation of strictly convex Banach spaces l_2j.

Let X  be a real Banach space. Now  X  is strictly convex (s.c.) iff

every j £ X     attains a maximum on at most one point of the unit sphere [l].

A duality mapping is a function /: X—>2       which satisfies  /(x) = {/ £ X  :

¡(x) = u/11 ||x||   and   ||/|| = ||x||!.   We say that /   is strictly monotone if for every

x 4 y and every / £ J(x), g £ J(y) we have (/ - g)(x - y) > 0 [2],  For / £

}(x), g £ ](y), we see from the following expansion due to Browder that

if-g)ix - y) = (||*|| - ||y||)2 + (U/H llyl! - fiy)) + (||g|| 11*11 - gix)) > 0.

Theorem (Petryshyn).  X  is s.c.   iff ]  is strictly monotone.

Proof.  Since each term of Browder's expansion is nonnegative we

have: /  is not strictly monotone <=> 3 x ^ y, / e J(x), g £ }(y) with

(/ _ g)(x - y) = 0 « 3 / £ X* with

/(x/||x||) = /(y/||y|i) = Ü/II = ||x|| = ||y||

<=>  3 / £ X    that attains a maximum at two points of the unit sphere.
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