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A CHARACTERIZATION OF STRICTLY CONVEX
BANACH SPACES

D. STRAWTHER AND S. GUDDER

ABSTRACT. A very short proof is given for Petryshyn’s characteri-
zation of strictly convex Banach spaces [2].

Let X be a real Banach space. Now X is strictly convex (s.c.) iff
every [ € X* attains a maximum on at most one point of the unit sphere [1].
A duality mapping is a function J: X — 2X" which satisfies J(x) = {f € X*:
fG) = || ||| and ||f]| = [|x[|}. We say that | is strictly monotone if for every
x4y and every [ € J(x), g € J(y) we have (f - g)(x —y) >0 [2]. For f €
J(x), g € J(¥), we see from the following expansion due to Browder that

(f - &z =3 = U=l = DyD? + LNy = 76D + gl lixl - gl > 0.

Theorem (Petryshyn). X is s.c. iff ] is strictly monotone.

Proof. Since each term of Browder’s expansion is nonnegative we
have: | is not strictly monotone & 3x £y, [ € J(x), g € J(y) with
(f-glx-y)=0 = 3feX* with

G/ Nl = G/ ly D = IF 1 = =l = iyl

= 3/ € X* that attains a maximum at two points of the unit sphere.
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