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INTERPOLATING SEQUENCES ON CONVEX CURVES

IN THE OPEN UNIT DISC

DENNIS H. WORTMAN1

ABSTRACT.   Let D be the open unit disc in the complex plane, and let

C be the unit circle.   Given a convex curve  T   in D  U  C, internally tangent

to C at one point, then a sequence on    I" , successive points of which are

equally spaced in the hyperbolic (Poincaré) metric, is shown to be inter-

polating.   This result is then applied to the study of the Banach algebra

H    .   The Gleason part of a point in the maximal ideal space of H      which

lies in the closure of a convex curve in D is proved to be nontrivial.    In

addition, for each point m in the maximal ideal space of H     which lies in

the closure of a compact subset of D union a point of C, an interpolating

Blaschke product is constructed whose extension to the maximal ideal

space has modulus less than 1 on m, and the relevance of this to the Shilov

boundary of H     is discussed.

1.   Introduction.    A well-known result, arrived at independently by W. K.

Hayman and D. J. Newman, gives a relatively simple geometric condition

under which a sequence in the open unit disc, lying on a ray from 0 to a point

of the unit circle, is an interpolating sequence [2, p.203].    The purpose of

this paper is to establish a similar condition for the case of a sequence,

lying on a convex curve, internally tangent to the unit circle, and then to

apply this result to the study of the Banach algebra, H    , of all bounded

analytic functions on the open unit disc.

Let D be the open unit disc in the complex plane, and let C be the unit

circle.   The geometry of D, as related to the study of many properties of H°°,

is most advantageously expressed in terms of the pseudohyperbolic metric

p , defined by

'  a- ß
pia, ß) =

1-äß
a, ß £ D.
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In particular,  the condition

(C) inf     IT  P(a„'a2.)> °
77     k ?¿ n

was shown by L. Carleson to characterize those sequences {a  \ in D on

which interpolation of bounded sequences by functions in H     can always be

obtained [2, p.  196].   As a consequence, a sequence ia^l satisfying (C) is

usually called an interpolating sequence, although, as in this paper and also

in [3l, the condition (C), rather than the equivalent interpolative property,

is the focus of interest.    An interpolating sequence 1 a  } is, of necessity, a

Blaschke sequence, that is, the zero sequence of a function in H    , and thus,

corresponding to such a sequence is an (interpolating) Blaschke product

Aiz), defined by

net    a   — z

n   la   1 — a z
1   n n

Aiz) converges uniformly on compact subsets of D and is bounded in modulus

(by 1) and so is an element of H00 (with sup norm 1).

We list, for reference,   the following easily verified properties of p on D:

(A) pia, ß)>pi\a\, \ß\).

(2) For a fixed r, 0 < r < 1, p ir, re1   ) is a monotone increasing function

of 6, 0 < 9 < n.

(3) If I-1 is a convex, decreasing curve in D U C (as a function  y = TW"),

intersecting C at 1, then for a, ß, y e T, with  | a| < \ß\ < |y|,

pia, ß) < pia, y).

Under certain  circumstances, condition (C ) may be replaced by some-

what simpler conditions.    Thus the result of Hayman and Newman, referred

to previously, implies that a sequence {a  J of points, of increasing modulus,

on a ray from 0 to a point of C, is interpolating if and only if

(HN) infp(a    a       )> 0;
77

that is, there is a minimal (positive) distance, in the pseudohyperbolic

metric, between successive points.    An extension of their arguments yields

the same result for a sequence, of increasing modulus, in a Stolz angle,

formed by two rays from a point on C (nontangential approach to C).   In §2,

it is shown that (HN) is also a necessary and sufficient condition for a

sequence { a  !, approaching C tangentially on a convex curve in D, to be

interpolating.   This follows as a corollary of the main result of that section

which shows that sequences on convex curves tangent to C, successive
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terms of which are equally spaced in the pseudohyperbolic metric, are inter-

polating.   Then in §3, this result is applied to the study of the structure of

the maximal ideal space \ , of H5".   The Gleason part of a point in II, lying

in the closure of a convex curve tangent to C, is shown to be nontrivial; and

a generalization of a theorem of Beurling, proved by M. Weiss in [41, is ob-

tained, and its relation to the Shilov boundary of H     is discussed.

I wish to thank Professor K. Hoffman for many useful discussions and

helpful suggestions concerning the content and format of this paper.   His

book [2] provides an excellent introduction to and reference for the study of

the Banach algebra H°°.

2. Interpolating sequences on convex curves.    The fundamental result in

this paper is the following theorem.

Theorem 1.    Let Y be a convex curve in D\j C, with Y f~l C = {ll and Y

tangent to C at 1.   Let { a  \ be a sequence of points on Y \{ l\, with \ a |  / 1

a72a' pi a , a      ) = 8, n = 1, 2, 3, • • • , for some number 8, 0 < 8 < 1.    Then

{a  \ is an interpolating sequence.

Before proving Theorem 1, we state and prove the following geometric

lemma which will be used in that proof.

Lemma. Let Y be as in Theorem 1.   Let 8 be a number, 0 < 8 < 1.   Let z

be an arbitrary point on Y, and let w be the point on Y satisfying:   arg 77; >

arg z and piw, z) = 8.   Let v be the point in D satisfying:   arg v = arg w

and \v\ = |z|.   Then lim infi   1    . piz, v) > 8.

Proof.   Geometrically the picture is as follows,   z is a (variable) point

on T and w is the point on Y which is 8 p-units "behind" z.   The Lemma

states that the point v, determined by the argument of w and the modulus of

z, lies outside the p-disc of radius ¿5, centered at z, if z is "near"  1, in the

usual metric on D.

Thus, let z, w, and v be as described in the Lemma, with (polar) notations

z = re1 , w = se1'*', v = re1'*', w and v, of course, depend on z (and on Y ), as

will the other points and quantities introduced below.

Let £ = re^be the point in D satisfying: arg £> arg z, | £| = \z\, and

piz, 0 = 8.   The proof will be complete if we can show that (eventually)

(1) 4> = at g v = arg w > arg Ç = ip,

tot then piz, v) > piz A) = 8 by (R2).

Let cf = Ze^be the point in D satisfying: arg ¿;- arg £, |cf|  < | z\, and

piz, 0 = 8.
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Let 772 be the slope of the line joining ii- and z, and let m' be the slope

of the line joining <f and z.   Then (1) is equivalent to saying that  w  lies be-

tween   ç and   Q on the p-circle of radius  ¿5, centered at z, or

(2) 772 <   772    .

Note that, by the convexity of Y  and its tangency to C at 1, 772—> — oo  as

z —> 1.   We will conclude the proof by showing that m ' is bounded from below

as z —► 1.

An examination (by tedious computation) of the pseudohyperbolic

distances between the points   w, £, f and z yields that

(3)

Sine

t = ir2 - 82)/ril - r282),        Í - r - - S2(l - r2)/ril - r2S2),

I - cos(t/> - d) = 52(1 - r2)V(l - S2) 2r2 .

m A it sin ip - r sin 0)At cos ip - r cos 0),

using (3), and noting that 1 - cos iip - 0)  is asymptotic to Viiip - 0)    as

r = | z\  —» 1, we find that

lim int m   = lim inf —■-~*-5-
r-1 r-1    it-r)+ lAir62 -tip2)

it-r)d+ tiiP-6)
= lim inf

r_i (, _ r)(i _ y2e2) + dit ~9)+ Viiifj - er

= _(1_¿52^/2S.

Proof of Theorem  1.   We may assume that Y is actually a monotone de-

creasing curve (as a function y = Yix)  oí teal variables) lying in the first

quadrant of the x - y plane.    We may then write a   = r   expiid ),  n = 1, 2,

■ • ■ , where r   > 0 and 0 < 6    < n/2.   Thus  r   / 1  and 0   \ 0  as 72 —< 00.
' n n n n

Property (R3) implies that pia , a.) > 8 it k 4 n. Consequently, to

prove that ! a \ satisfies condition (C ), it is equivalent to show that i a \

satisfies

(C') sup    H  [1 - p2ian,ak)1< co       [3, p. 96].
72 &/T7

The key step in verifying (C ) will be to relate the pseudohyperbolic

distance between successive points in the sequence ! a ! to the angular

separation between the points.   It is here that the preceding Lemma will
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be applied to replace pi&y, a, +.)  by pißu, at+?' wnere ßu  IS tne point

obtained by translating   a,   along the ray  6 = arg a,   to the point whose

modulus is  | a, +.|.

Thus, consider a (fixed) 72.   Let (p,= 6   - 0,, k = 1, 2, 3, • • • ,  be the

angle between   a     and   a, .   We note that

(l-r2)(l-r2) 4(l-r,)(l-r  )
71 R, , k, 71

r   y   n'     k'       f*       _   Z   \2   ,   I"   _   /,   _  _   j    \ - (,       _   \2   ,   1/2,2

2( \ n k , k

= .(1 - r.r )2 + It.t Ü - cos ¿.) " Ü~rT2~+ ^rfcp2
£72 fe   72 r S 72 1 r«

Combining this with (C  ), we need now show only that

(C ) sup   2^ ai(?2) < 00,

where

72      k^n

a in) = (1 - r. XI - r )/((l - r )2 + Mr2çS2),       4-1, 2,.--.
« « 77 72 1 r fe

We now relate ( 1 - r, )  to the angular separation between   a, _ ,   and   a,.

Thus let  à(pk = cpk~ <pk_v k = 2, 3, • • ■ •    Applying the Lemma to the se-

quence Í a I, we find that for large k, say k >  N,

(1) 8 = piak_l,a/)<pißk,ak),      ßk = r^exp^^), k = 2, 3, •• •.

In addition, since

2r2(l - cos A0fe)
p  iß.) at) = -,-jTj-YT-t——; ,       k - 2, 3, •' ',

k      k        (1 - r2)2 + 2r2(l - cos AoSk)

we have

(2) p^.a^A^Al-rl),       A =2, 3,---.

Therefore, combining (1) and (2), we conclude that there exists a positive

number c, such that

(3) S < c Ac^/(l - r2),        A = 2,3,---.

To verify (C   ), we now consider two cases:  (i) £,        aSn)   and Cii)

Case (i).   (Points to the "left" of a .)

We will estimate (i) by a definite integral, but it will first be necessary

to translate angles. Let {R S be a sequence of positive numbers monotonely

increasing to 1, for which piR       ,, R   ) >  8 and
D r       772 — l'      m     —

(4) 0<c1<(l-Rm)/(l-ßm_1)<c2<l,       772=2, 3, •••,
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for some numbers  c.   and  c2.   [if 8 <ij - l)/(; + 1),  then one choice for

Rm  is  Rm= l-j~m, 772= 1, 2, •••.]   Since, by (Rl),

^K'^i^Kl'K^'   k = i,2,---,

| a, |   and  | ak + 1|   either lie between two successive terms of {R   S or are

separated by exactly one such term.   In either case, it follows from (3) and

(4) that

(5) 1 - rk < U - rk+l)/c¡ < CA^+1/c2S,      k = 1, 2, • • •.

Hence, if we set p = 2 2c/c.8r , and use (5), we find that
1"' i'

ipf~JT^TAd'-"p/2-

Case (ii).   (Points to the "right" of a .)

By an argument similar to that in Case (i), but without the need to

translate angles in order to obtain the integral estimate, we find by setting

a= 2/lc/8rx that Sfe   „ak^ — •/^770-

Thus, by combining Cases (i) and (ii), we see that  {a  \  satisfies (C   )

since p   and   a are independent of 72, and so S a   I is an interpolating sequence.

The following corollary extends the Hayman-Newman theorem to the

case of sequences approaching  C tangentially on a convex curve.

Corollary.   Let Y be a convex curve in  D U  C, with Y O C = !l}   and

Y tangent to   C at 1.   Let {a  \ be a sequence of points on Y\{\\,  with

| a  |   / 1.    Then {a  \  is an interpolating sequence if and only if {a  I

satisfies (HN); i.e.,  inf   pia , a   ,,) > 0.
I V '1 ' n   r 72' 72 +1

Proof.    The necessity of (HN) follows immediately from (C).

The proof of Theorem 1 also proves the sufficiency of (HN).   In fact,

only in obtaining (5) in the proof of Theorem 1 was it necessary to have

8=piak,  ak + l)  rather than  8 < piak,  afe+).   However, (5) for the latter

condition above follows directly from (5) for the former condition.   For, if

8<pia,, a, +.), let a'  be the point on Y between   a,   and   a,       for which

p( ak,   a') = ¿5.   Then, by the convexity of Y, the angle between   a,   and

a'   is less than the angle between   a,    and  at+,, ^<A¿+i^> arK^ tnus (5) is

valid for the condition S<p(a,, a, +.)  also.
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3. Applications to   H°°.   Let m  denote the maximal ideal space of  H°°,

and M .   the fiber of  m. over 1; i.e., the subset of ÎÏÏI  consisting of all homo-

morphisms t?2  whose value on the identity function   z is 1.   In this section

we will examine properties of the structure of 1)1    related to convex subsets

of  D.

Theorem 2.   Let Y  be a convex curve in  DuC, with Y C\ C = ! lS   and

T  tangent to   C at 1.   // 772  e \     lies in the closure of Y in m, then the

Gleason part of m  is nontrivial.

Proof. Let 1/3.1 be a net, ß. e T, such that lim. ß. = m. Fix a number

8, 0 < 8 < I, and form a sequence { a \ satisfying the hypotheses of Theorem

1,   I a I / 1  and pia , a   .,) = 8.   Let   a   ...    be a member of 1 a  ! which
'     '      72' r 72' n +1 72(2) 72

is nearest to  ß. in the metric  p.    Thus, eventually,   pia   ..., ß.) < ¿5.   Pass-

ing to subnets, we may assume that   a  ...—* mA% .   Hence, by the lower

semicontinuity of p on   m. x )R [3, p.   103l, pim', m) < 8 < 1, so the Gleason

part of 772  is nontrivial, since it is thus the same as that of  772    which is

nontrivial by [3, p.88].

As a second application of Theorem 1, we prove

Theorem 3.    Let  K  be a compact subset of DuC, with  K D C= ilS.

Then there is an interpolating sequence {a  \ in  D, with   a   —► 1, a72a" for

which the associated interpolating) Blaschke product Aiz)  is of sup norm

less than I on  k\{1\:   sup}|A(z)|:   2: e k\¡ 1Ü < 1.

Proof.   Since we may replace  K by the closed convex hull of K U K,

where  K = \"z :   z £ K\, we may assume that  K is a compact, convex subset

of DUC, symmetric about the real axis, and having as a boundary a curve

y  which is tangent to   C  at 1 .   (If  K U K is contained in a Stolz angle, it

may be replaced by a disc tangent to   C  at 1.)   Let Y denote the portion of

y lying above the real axis, and form a sequence la   1 on T, satisfying the

conditions of Theorem 1, using any number 8, 0 < 8 < I.   Then the sequence

{ a., a , • • • ,  a , ä   ,•■•}. is an interpolating sequence, as the union of

two such sequences, and the corresponding Blaschke product   Aiz)  has the

property that  |/l(z)| < ¿5 for  z on that portion of  y  "between"   a,   and lor

"between"   3.   and 1, since such  z  ate within  8 p-units of some   a    or1 ' r 77

a .   And so,  because the remaining portion of y is a positive distance from

C, there is a number  d, 0 < d < 1, such that  | Aiz)\ < d for all   z ey\|l|.

The Phragmen-Lindelo'f theorem then implies that
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supi|Mz)|:z £ AiliS = sup||A(z)|: z £ y\{l\\,

and the result follows.

Corollary.   LeZ  K  be a compact subset of D\j C, with  K CiC ={l\.   If

?72  e)II.  lies in the   closure of  K\ilS   in Tí,   then there is an interpolating

Blaschke product  Aiz)  whose extension  A  to m  is of modulus less than 1

072  772:   |Â(m)|  < 1.

Theorem 3 contains a theorem of Beurling [4], which arose from a query

of M. Weiss about  the relation of Blaschke sequences to the interior of Til.

in  M \ D.   The corollary to it provides a partial solution to a question posed

by K. Hoffman concerning the relation of interpolating Blaschke products to

the Shilov boundary d of H°°.   By a well-known theorem of D. J. Newman

[2, p. 179], d  consists of those homomorphisms of H°°  on which (the exten-

sions of ) all Blaschke products have modulus 1.   If we denote by 3 the set

of all homomorphisms of  H°°  on which (the extensions of) all interpolating

Blaschke products have modulus  1, then by Newman's theorem,  â C 3.   Is

d = v?    The corollary to Theorem 3 shows that a point in ill \ D which lies

in the closure of a compact subset of  D union a point of  C is 720Z in 3.   Of

course, this is only a partial answer to the question.   But, if d 4 á, then the

sup norm  algebra H°° L    is an example of a proper sup norm  algebra which

has only trivial Gleason parts.    The first example of such a phenomenon was

given by B. Cole [l].
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