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THE PRODUCT FORMULA FOR STIEFEL-WHITNEY

HOMOLOGY CLASSES

STEPHEN HALPERIN AND DOMINGO TOLEDO1

ABSTRACT. We give a combinatorial proof of the formula for the

Stiefel-Whitney homology classes of the product of two Euler spaces.

Some relevant facts on ordered triangulations are also included.

Let X be a locally finite, 22-dimensional polyhedron.   X  is called an

integral Euler space (resp. mod 2 Euler space) if for all  x £ X  the local

Euler characteristic  \(X, X - x) = (-1)" (resp. = 1 (mod 2)).  If  K  is a

triangulation of X (always assumed compatible with the PL   structure of

X), we denote its  first barycentric subdivision by   K  .   If a is a vertex

of K  , \a\   is the dimension of the corresponding simplex of  K.  Note that

the vertices of K     ate naturally ordered by the inclusion of simplices in K.

For p = 0, 1, • • • , n, the p th Stiefel chain of K    is the chain (infinite

if X is not compact)

(1) VK<)=        £ i-l)^+-+¡apl(a0-.-ap)eCpÍK;Z).

UQ<...<ap

This is just the sum of all /5-simplices of K , with appropriate signs.

sAK )  is an integral cycle whose homology class represents  x(^)  if X

is compact and connected.

X is a mod 2 Euler space if and only if all the Stiefel chains are

mod 2 cycles [3].  The homology class of s (K )  is then independent of

the triangulation  K (cf. [l]) and is called the p  th Stiefel-Whitney homology

class of X, w (X) £ H (X, Zj).

X is an integral Euler space if and only if dsAK') = (1+ (-l)"~p)s _AK')

[2].  In this case we get integral classes w AX) £ H AX, Z)  when n — p

is odd, and 222 (X)  is the Bockstein of w^   AX) £ H.    ,(X, Z.,).

If X is a smooth manifold, Whitney showed that u> (X)  is the Poin-
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care dual of the usual Stiefel-Whitney cohomo logy class  w"~p(X) [41.

Now if X  and  Y  ate integral (or mod 2) Euler spaces, then so is  X x

V.  The main purpose of this note is to give a combinatorial proof of the

product formula for these classes.  Here x: H +(X) &HJ.Y) —» W^X x V) de-

notes the cross-product in homology:

Theorem.   Let X, Y  be mod 2 Euler spaces.   Then

P

w IX x Y) - £ wíX)xwp_ÍY).

r=0

We prove this formula in §1, assuming some facts on ordered triangula-

tions that are proved in §2.  With these facts we also get as an easy corollary

the product formula for the integral classes:

Corollary.   Let  K and L  be triangulations of integral Euler spaces X,

Y of dimension m, n.   Then, if m + n — p  is odd, S      (- l)mrs (K ) x s      (L )

is an integral cycle that represents w (X x Y) £ H AX x Y, Z).

J. Milnor has a different combinatorial proof of the product formula.

There is also an argument due to C. McCrory and D. Sullivan that reduces

it to the well-known formula for manifolds via "resolutions" of Euler spaces.

For other properties of the Stiefel-Whitney homology classes see [l].

1.   Proof of the Theorem.  Let  K  and L  be triangulations of X  and  Y,

and let  K x L   denote the cell complex whose cells are the product of a   sim-

plex in   K with a simplex in  L.  The vertices of its first barycentric subdi-

vision (K x  L)     ate the pairs (a, b)  where a  is a vertex of K     and b is a

vertex of L  , and are ordered by (a, b) < (a  , b )  if a < a  , b < b     and

(a, b) 4 ia  , b ).  The simplices of (K x L)     ate precisely the linearly or-

dered subsets, which we always write in increasing order.

Now the cross-product in homology is induced by the chain map (Z-

coefficients!)   C¿K')®C¿L') -» C+iiK x L).')  given by

(2)      (a0-.. a  )® (bQ... b   ) ,-  £<(a    , b    ) ■■■ (a        ,b ))
0        '0 p+q        'p+q

where the sum is over all pairs  i. < • • • < i       ./.<•••< ; such thatr 0 — —   p+q' '0 —        — 'p+q

''(I'   '"'   '   Zi>+«'=  *0'  '"   '  P\>   ̂ 0'   '"   '  Íp+q^=  *°»  •*"»  ^'   and f°r  eacH   r'

either i   < i    ,   or  /   < /
r        r + 1 'r      '>+l

Let o = ((aQ, bQ) • • • (a  , b )) < (K x L) '.  We say that o has a jump

at  i if a.   . < a. and b.   , < b..  Then clearly  S w (X) x w ̂      (Y)  is rep-
2—1 i 2—1 i ]        r    r p— r r
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resented by the sum of all o <(K x L)' such that cr has no jumps. Now

by the Proposition below, w (X x Y) is represented by sA(K x L) ) = sum

of all ap <(Kx L) '.  Thus if

c   =s AiKxL)')-Y s (K')xs      U'),
p p *—J    r p — r

r

then  c   = sum of all op <(K x L)     such that cr*"  has at least one jump, and

the product formula is equivalent to the fact that  c    is a boundary.

We construct an explicit chain  aL   ,   such that dd^   , = c\ .   First wer P+i P+i        P

say that (a., b¿) is a critical vertex of r = ((aQ, bQ) ••• (a     ,, b    j))  if

either

(i)  a .   , < a . = a.   ,   and  b.   . = b . < b .   ., or
2-1 2 2+1 2—1 2 2+1'

(ii)  a .    .=«.<«.,   and b .   .  < b . = b .   ..
2-1 2 2+1 !- 1 2 2 + 1

We then define an integer (mod 2), v(r), by v(r) = number of critical vertices

of r of type (i) before the first jump. (If r has no jumps, v(r) is the number

of critical vertices of type (i).)  Let

^ + 1= Z Mp + l)rp + l.

tP + 1<(.KxL)'

Claim,  od^   , = c\.P + l        P

Proof,  dd^   , = 7£   À„<7 where
¿7 + 1 CT     C

rp+i >a

For each t7 = ((aQ, ¿7Q) • • • (a  , ¿> )) , the {p + l)-simplices containing it are of
P1    P

the form

°i;a,b = <U0' èo) ••• K-i' 6,vi)(fl> ^K- e¿) ••• Íap, bp))

(with the obvious definition of oQ _a ,, o     j      ,).  Then  X(T= 2^=0 «.(ff)   where

Bf(ff) = 21 l/(a2;a,i7)-

(a;_l> ¿¿_1)<(a, b)<(a{, bf)

In the computations that follow, we constantly use the fact that if x < y

are vertices of K    or L  , then each of the conditions z < x, x < z < y, y < z

is satisfied by an even number of vertices z.  (Ci. Lemmas 1 and 2 below.)

Let k > 1  be the first jump of o. (Possibly k = p + 1, i.e., o has no

jumps.)  First we show that ACT= n,(o), i.e., ?2.(cr) = 0  for i 4 k.

Consider the following cases:
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(1) i > k.   Then  vio.      A = v(o)  for all (a, b), and the number of ct..    ,

is even.   Thus « . = 0.
2

(2) i = 0.   Divide the oQ_    ,   onto three disjoint subsets according to

the following conditions:  a < a_, ¿> < ¿7„; a = aQ, è < ¿7 ; a < aQ, ¿> = f5Q.  In

each subset, iXct.      ,)  is constant, and the number of cta      ,   in each sub-
' 0 ;a,b ' 0;a,¿7

set is even.  Hence »„ = 0.

(3) 0 < i < k.  In this case either a .    , = a .  and ¿2.   , < b. or a .    . <
7-  1 2 7- 1 2 z— 1

a .  and b .   , = b ..  If the first condition holds, then for all  o .      ,, a .   . =
2 2-12 ' i;a, t>'     2— 1

a = a.  and  ¿>.    , < b < b..  Thus i/(ct .      ,)   depends only on   i (and similarly
l 2—1 2 2;í2,f7r J J

if the second condition holds).  Hence, as above, 72. = 0.

Since À   = 72,, the claim will be proved by showing that 22, = 1  if ct

has jumps and 0   if ct has no jumps, i.e., it has to be shown that »,  = 1  if

k < p  and nk = 0  if k = p + 1.

Suppose k = p + 1.   Then via     ,.a ¡A is constant on each of the three

subsets a^   , < a, tV    , < b; a^   , - a, fo     , < b; a.   , < a, b ^   , = b;   andp+i        '    p+i       '    p+\       '    p+\ p+\        '     p+i

there is an even number of vertices in each subset.  Hence », = 0  in this

case.

Suppose k < p.   Then  v(o, ,        ) = v(o, ,   ) + 1, and v is
*-<aAk-\ *"ak-\'bk

again constant on each of the subsets (a, b,     ,); (a,_,, b); (a, b)   with

a, _ . < a < a,, b,_ , < b < b,. Hence in this case »,  = 1.

The proof of the Claim is now complete.

2.  Ordered triangulations.   By an ordered triangulation of a polyhedron

X, we mean a triangulation  K of X  together with a partial ordering on the

vertices such that the simplices of K  are precisely the linearly ordered sub-

sets (e.g., the first barycentric subdivision of a cell complex).  We always

write the simplices of K in increasing order.

If a is a vertex of  K, we write simply  a~   fot (a)    = \b:   b < a!, and

a    for (a)j = {b:  a < b\.  Let   |a| = 1 + dim a-.   If  K is a finite complex, #(K)

means the number of vertices of  K.

Note that if K is an ordered triangulation, then we can define the

Stiefel chains  s AK) £ CAK, Z)  by the same formula ( 1).

If ct = (aQ • • • a ) < K, then  Lk(o, K) = ctq * CTj * • • • * ct     ., where o.

is the full subcomplex of K  spanned by the vertices a such that a ._ . < a

< a.,
2

Lemma 1. Let K be an ordered triangulation of an integral (resp. mod 2)

Euler space, and let o < K. Then each o. is an integral (resp. mod 2) Euler

space and y(o .) = 1 + (-1)   imai (resp. \ia )   zs even).
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Proof.  It is easy to see that  Lkio, K) is an Euler space, and hence

that each ct . is an Euler space.   Since o. is the link of a maximal simplex

in the join of the remaining ct .' s, it follows that o . has the Euler character-

istic of a sphere of the same dimension (cf. [2, §2]).

Lemma 2.   // K  is an ordered triangulation of a compact integral (resp.

mod 2)   Euler space, then  ~y(K) = SaeK(-l)H (resp.   y(K) = (#(K)(mod 2)).

Proof.  Note that

x(rv) =  7. Í- l)p(number of p-simplices  (an • • • a  ))

P

=   2-,< ¿A  [(-Outnumber of (p - l)-simplices in  a~)1 + l\
a    t/j>l S

=   Z(l-X(a~»-
a

But by Lemma 1, 1 - x(«~) = (- 1)'"'   (resp. 1 - y^a') s 1 (mod 2)).

Lemma  3.   // K  is an ordered triangulation of an integral Euler space,

then

dsAK) = (l + i-l)"-p)sh   AK).
p p-1

Proof.   By Lemmas 1 and 2, this is the same as the proof of Proposition

1 of [2], replacing  Lk(a., a. + 1)  by  ct. + [.

Proposition.   Let  K be an ordered triangulation of X

>AK)  represe...P r P(i)  // X  is a mod-2 Euler space, then s (K)  represents wAX) £

Hp(X, Z2).

(ii)  Moreover, if X  is an integral Euler space and n — p  is odd, p > 0,

then sp(K)  represents wp(X) £ Hp(X, Z).

Proof.   By Lemma 3, (ii) follows from (i).   To prove (i), define a simpli-

cial map  (p: K    —'K as follows.  If ct < K  and ct  denotes its barycenter,

let (p(5) = 222(ct)  where ??2(ct)  is the maximum vertex of ct.  (p  extends to a

simplicial map that induces the identity in homology.

Now an easy computation gives (Z, coefficients!)

(bispÍK'))=        Z a <a0...op)

a0<---<ap p

where, if a = (a    • • • a  ),
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an «      =ittioA+l)ittioA   +   1)   ■■■ittio^.)   +1).
aQ--ap 0 1 ö+I

But by Lemma 2, #(ct.) = y(\o.), which is even by Lemma 1.   Thus  aa

^ 1   and <fAsp(K')) = sp(K). °"  P

The first part of the Proposition was the only step missing in the proof

of the Theorem.   To prove the Corollary, let x:  C^(K , Z) ® CJ,L  , Z) —>

QKKx L)  , Z)  be any chain map inducing the cross-product in homology;

i.e., such that d(x x y) = (dx) x y + (— l)px x dy  it x £ C (K , Z).  For ex-

ample, we could use the same formula (2) with appropriate signs.

An easy computation then shows that if m + n - p  is odd,

/P+l \ P

dl y  s ÍK') x .    ,    ÍL')) = 2 Y (- l)mrs ÍK') x s      ÍL').
\ í-¿      r p + l-r I t-" r p-r

\r=0 / r=0

Thus ~S,PA-l)mrs (K ) x s      (L  )  is an integral cycle that represents the

Bockstein of 22/       (X x Y).
P + 1
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