PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 48, Number 1, March 1975

THE PRODUCT FORMULA FOR STIEFEL-WHITNEY
HOMOLOGY CLASSES

STEPHEN HALPERIN AND DOMINGO TOLEDO'!

ABSTRACT. We give a combinatorial proof of the formula for the
Stiefel-Whitney homology classes of the product of two Euler spaces.
Some relevant facts on ordered triangulations are also included.

Let X be a locally finite, n-dimensional polyhedron. X is called an
integral Euler space (resp. mod 2 Euler space) if for all x € X the local
Euler characteristic x(X, X - x) = (~1)" (resp. = 1 (mod 2)). If K is a
triangulation of X (always assumed compatible with the PL structure of
X), we denote its first barycentric subdivision by K'. If @ is a vertex
of K', |a| is the dimension of the corresponding simplex of K. Note that
the vertices of K’ are naturally ordered by the inclusion of simplices in K.

For p=0,1, -+, n,the p'th Stiefel chain of K' is the chain (infinite

if X is not compact)

(1) SP(K') _ Z (_ l)la0|+-.. +lapl(a0 .. ap) € CP(K', Z).

ap<.-<ap

This is just the sum of all p-simplices of K', with appropriate signs.
sO(K') is an integral cycle whose homology class represents x(X) if X
is compact and connected.

X is amod 2 Euler space if and only if all the Stiefel chains are
mod 2 cycles [3]. The homology class of SP(K ") is then independent of
the triangulation K (cf. [1]) and is called the p "th Stiefel-Whitney homology
class of X, wp(X) € HP(X, Zz)'

X is an integral Euler space if and only if asp(K') =(1+(- 1)""")sp_l(K')
[2]. In this case we get integral classes wp(X) € HP(X’ Z) when n—~p
is odd, and wp(X) is the Bockstein of wp+l(X) € Hp“(X, ZZ)'

If X is a smooth manifold, Whitney showed that wp(X) is the Poin-
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caré dual of the usual Stiefel-Whitney cohomology class w™~?(X) [4].

Now if X and Y are integral (or mod 2) Euler spaces, then so is X x
Y. The main purpose of this note is to give a combinatorial proof of the
product formula for these classes. Here x: H (X) @ H (Y) — H (X x Y) de-

notes the cross-product in homology:

Theorem. Let X, Y be mod 2 Euler spaces, Then

4
w (X xY) = 2 w (X)) x w,_ (¥

r=0

We prove this formula in §1, assuming some facts on ordered triangula-
tions that are proved in $2. With these facts we also get as an easy corollary

the product formula for the integral classes:

Corollary. Let K and L be triangulations of integral Euler spaces X,
Y of dimension m, n. Then, if m + n - p is odd, Ef=0(— l)”"sr(K') xs,_(L "
is an integral cycle that represents wp(X xY) € HP(X x Y, 7).

J. Milnor has a different combinatorial proof of the product formula.
There is also an argument due to C. McCrory and D. Sullivan that reduces
it to the well-known formula for manifolds via ‘‘resolutions’’ of Euler spaces.

For other properties of the Stiefel-Whitney homology classes see [1].

1. Proof of the Theorem. Let K and L be triangulations of X and Y,
and let K x L denote the cell complex whose cells are the product of a sim-
plex in K with a simplex in L. The vertices of its first barycentric subdi-
vision (K x L)' are the pairs (a, 5) where a is a vertex of K’ and & is a
vertex of L', and are ordered by (a, b) <(a', b") if a<a',b<b' and
(ay b) #(a', b'). The simplices of (K x L)' are precisely the linearly or-
dered subsets, which we always write in increasing order.

Now the cross-product in homology is induced by the chain map (Z2
coefficients!) C*(K') ®C. (L - C ((Kx L) ") given by

(D (ag-a,) @ (by e by) s Tllay, b, ) (a; 24,0

where the sum is over all pairs i) <--- < z'p+q, To -
{io’ ceey ip+q¥= {0, ---, p}, {]'0, }=10,---, ¢}, and for each r,

either 7 < i1 007, <j

" STpsq such that

"Tp1q
r+l1°
Let 0 = ((ao, by) -+ - (ap, bp)) <(Kx L)'. We say that o has a jump

at i if a;_, <a,and b, | <b,. Then clearly err(X) xw,_(Y) is rep-
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resented by the sum of all o <(Kx L)' such that ¢® has no jumps. Now
by the Proposition below, wp(X x Y) is represented by sp((K x L)"') = sum
of all o? <(Kx L)'. Thus if

¢, = sp((K x L)) 3 s (K') x sp_r(L'),

then ¢, = sum of all 0 <(K x L)' such that ¢ has at least one jump, and
the product formula is equivalent to the fact that 2 is a boundary.
We construct an explicit chain dp+1 such that adp+l = c,. First we

p .
bp+1)) if

say that (a,, b.) is a critical vertex of 7= ((ao, bg) - -+ (“p+1’

either
() a,_;<a,= a,,adb,_;=b,<b, ,or
(i) a;_; =a;< a;,,and b, <b =b,
We then define an integer (mod 2), v(7), by v(r) = number of critical vertices
of 7 of type (i) before the first jump. (If 7 has no jumps, v(7) is the number
of critical vertices of type (i).) Let

_ p+1y, p+1
dp+l = Z P+ )7 .

AT IR

Claim. 3dp+1 =Cpe
Proof. adp+1 =2 _A 0 where

A= 2 Urp+l),

?*lso
For each o = ((ao, by) - -- (ap, bp)) , the (p + 1)-simplices containing it are of
the form

Oirap = ((agy bg) -+ (a, 1, b, N a b)(a, b) e (ap, bp)>

1

(with the obvious definition of 90,6 Up+l;a.b)‘ Then )\o= zf:olni(a) where

n(0) = > LG
(a;_1, b;_1)<(a, b)<(a;, b))

In the computations that follow, we constantly use the fact that if x <y
are vertices of K' or L', then each of the conditions z<x, x<z <y, y <z
is satisfied by an even number of vertices z. (Cf. Lemmas 1 and 2 below.)

Let k > 1 be the first jump of 0. (Possibly k= p + 1, i.e., 0 has no
jumps.) First we show that A_=n,(0), i.e., n,(0) =0 for i # k.

Consider the following cases:
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(1) i > k. Then V(Oi;a'b) =1{0) for all (a, b), and the number of Oiab
is even. Thus n;= 0.

(2) i =0. Divide the 90.a,b OBLO three disjoint subsets according to
the following conditions: a < a, b< bo; a=ag, b < bo; a<ag, b= bo. In
each subset, v(oo;a’b) is constant, and the number of 90 .a,b in each sub-
set is even. Hence n, =0.

(3) 0 <i<k. In this case either a,_
a, and bi-l
a=a, and bl._l <b< bz.. Thus V(Ui;a’b
if the second condition holds). Hence, as above, n, = 0.

=a;,and b,_, <b ora, <
= b,. If the first condition holds, then forall 0, ,,a, =

) depends only on 7 (and similarly

Since A, =mn,, the claim will be proved by showing that », =1 if 0
has jumps and 0 if 0 has no jumps, i.e., it has to be shown that n, =1 if
k<pandn, =0 if k=p+ 1

Suppose k= p + 1. Then V(op“,a p) is constant on each of the three
p+1<a, bp+1<b; 4y p+l<b; ap+1<a,bp+l=b; and

there is an even number of vertices in each subset. Hence n, = 0 in this

subsets a =a, b

case.

Suppose k < p. Then V(ak;“k'bk 1) = "(ak;ak 1ob )+ 1, and v is

again constant on each of the subsets (a, bk— l); (ak_l, b); (a, b) with

a,_,<a<a b -1<b<bk' Hence in this case nk=1.

kY Tk
The proof of the Claim is now complete.

k

2. Ordered triangulations. By an ordered triangulation of a polyhedron
X, we mean a triangulation K of X together with a partial ordering on the
vertices such that the simplices of K are precisely the linearly ordered sub-
sets (e.g., the first barycentric subdivision of a cell complex). We always
write the simplices of K in increasing order.

If a is a vertex of K, we write simply a~ for (a)o =1{b: b < a}, and
a* for (@), = {b: a < bl Let |a| =1 +dim a~. If K is a finite complex, #(K)
means the number of vertices of K.

Note that if K is an ordered triangulation, then we can define the
Stiefel chains sp(K)E Cp(K’ Z) by the same formula (1).

If 0 = (ao ap) <K, then Lk(o, K) =0 x0 Kk *ap+1
is the full subcomplex of K spanned by the vertices a such that a._, <a

, where o
1

<a..
1

Lemma 1. Let K be an ordered triangulation of an integral (resp. mod 2)
Euler space, and let ¢ < K. Then each o, is an integral (resp. mod 2) Euler
space and X(ai) =1+(- l)dimai(resp. x(0,) is even).
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Proof. It is easy to see that Lk(g, K) is an Euler space, and hence
that each o, is an Euler space. Since 0, is the link of a maximal simplex
in the join of the remaining a].’s, it follows that o has the Euler character-

istic of a sphere of the same dimension (cf. [2, §2]).

Lemma 2. If K is an ordered triangulation of a compact integral (resp.

mod 2) Euler space, then x(K) = 5, (- D!l (resp. x(K) = (#(K) (mod 2)).

Proof. Note that

x(K) = 3~ (- 1)®(number of p-simplices (ag - - ap))

14
= 2 {2 [(-1)P(aumber of (p — 1)-simplices in a”)] + 1}
a ‘p=1

3 - xla).

But by Lemma 1, 1 - x(a™) = (- l)lal (resp. 1 — y(a™) =1 (mod 2)).

Lemma 3. If K is an ordered triangulation of an integral Euler space,
then

35 (K) = (1 + (-D)"=?)s_ (K.

Proof. By Lemmas 1 and 2, this is the same as the proof of Proposition
1 of [2), replacing Lk(a;, a, ;) by o,

i+l”

Proposition. Let K be an ordered triangulation of X.

(1) If X is a mod-2 Euler space, then sp(K) represents wp(X) €
Hp(X, Z).

(ii) Moreover, if X is an integral Euler space and n — p is odd, p >0,
then sp(K) represents wp(X) € Hp(X, 7).

Proof. By Lemma 3, (ii) follows from (i). To prove (i), define a simpli-
cial map ¢: K' — K as follows. If 0 < K and 6 denotes its barycenter,
let H0) = m(o) where m(c) is the maximum vertex of 0. ¢ extends to a
simplicial map that induces the identity in homology.

Now an easy computation gives (Z, coefficients!)

¢(SP(KI)) = > Ay g f@g oot ap)

where, if 0 = (a0 cee ap),



244 STEPHEN HALPERIN AND DOMINGO TOLEDO

Ay g = Wo) + Do) +1) -+ (o, ) + D).

a
0 14
But by Lemma 2, #(0;) = x(0,), which is even by Lemma 1. Thus a,
’ 0
=1 and ¢(s,(K") = 5,(K. ?

The first part of the Proposition was the only step missing in the proof
of the Theorem. To prove the Corollary, let x: C*(KI, 7)) ® C (L "7y —
C,(Kx L)', Z) be any chain map inducing the cross-product in homology;
i.e., such that d(x x y) = (%) x y + (- 1)Px x dy if x € Cp(K" Z). For ex-
ample, we could use the same formula (2) with appropriate signs.

An easy computation then shows that if m + n — p is odd,

p+1 4
(9(2 sr(K') x sp+1_’(L')> =2 Z - I)m’s'(K') X sp_r(L').

7:0 r:O

Thus Ef=0(—- l)m'sr(K Y x sp_’(L "y is an integral cycle that represents the
Bockstein of wp+l(X x Y).

REFERENCES

1. E. Akin, Stiefel-Whitney homology classes and bordism, Trans. Amer. Math,
Soc. (to appear).

2. S. Halperin and D. Toledo, Stiefel-Whitney homology classes, Ann. of Math.
(2) 96 (1972), 511-525. MR 47 #1072.

3. D. Sullivan, Combinatorial invariants of analytic spaces, Proc. Liverpool
Singularities Sympos. I (1969/70), Lecture Notes in Math., vol. 192, Springer-Verlag,
Berlin, 1971, pp. 165—168. MR 43 #4063.

4, H. Whitney, On the theory of sphere bundles, Proc. Nat. Acad. Sci. U.S.A.

26 (1940), 148—153. MR 1, 220.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, ONTARIO,
CANADA (Current address of Stephen Halperin)

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW
JERSEY 08540

Current address (Domingo Toledo): Department of Mathematics, Columbia Uni-
versity, New York, New York 10027



