THE PRODUCT FORMULA FOR STIEFEL-WHITNEY HOMOLOGY CLASSES

STEPHEN HALPERIN AND DOMINGO TOLEDO¹

ABSTRACT. We give a combinatorial proof of the formula for the Stiefel-Whitney homology classes of the product of two Euler spaces. Some relevant facts on ordered triangulations are also included.

Let X be a locally finite, *n*-dimensional polyhedron. X is called an integral Euler space (resp. mod 2 Euler space) if for all $x \in X$ the local Euler characteristic $\chi(X, X - x) = (-1)^n$ (resp. $\equiv 1 \pmod{2}$). If K is a triangulation of X (always assumed compatible with the PL structure of X), we denote its first barycentric subdivision by K'. If a is a vertex of K', |a| is the dimension of the corresponding simplex of K. Note that the vertices of K' are naturally ordered by the inclusion of simplices in K.

For $p = 0, 1, \dots, n$, the p'th Stiefel chain of K' is the chain (infinite if X is not compact)

(1)
$$s_p(K') = \sum_{a_0 < \cdots < a_p} (-1)^{|a_0| + \cdots + |a_p|} \langle a_0 \cdots a_p \rangle \in C_p(K', \mathbb{Z}).$$

This is just the sum of all *p*-simplices of K', with appropriate signs. $s_0(K')$ is an integral cycle whose homology class represents $\chi(X)$ if X is compact and connected.

X is a mod 2 Euler space if and only if all the Stiefel chains are mod 2 cycles [3]. The homology class of $s_p(K')$ is then independent of the triangulation K (cf. [1]) and is called the p'th Stiefel-Whitney homology class of X, $w_p(X) \in H_p(X, \mathbb{Z}_2)$.

X is an integral Euler space if and only if $\partial s_p(K') = (1+(-1)^{n-p})s_{p-1}(K')$ [2]. In this case we get integral classes $w_p(X) \in H_p(X, \mathbb{Z})$ when n-p is odd, and $w_p(X)$ is the Bockstein of $w_{p+1}(X) \in H_{p+1}(X, \mathbb{Z}_2)$.

If X is a smooth manifold, Whitney showed that $w_p(X)$ is the Poin-

Received by the editors August 8, 1973.

AMS (MOS) subject classifications (1970). Primary 57C99.

¹ Supported in part by National Science Foundation grant GP-36418 and NRC A 8047.

Copyright © 1975, American Mathematical Society

caré dual of the usual Stiefel-Whitney cohomology class $w^{n-p}(X)$ [4].

Now if X and Y are integral (or mod 2) Euler spaces, then so is $X \times Y$. The main purpose of this note is to give a combinatorial proof of the product formula for these classes. Here $\times: H_*(X) \otimes H_*(Y) \to H_*(X \times Y)$ denotes the cross-product in homology:

Theorem. Let X, Y be mod 2 Euler spaces. Then

$$w_{p}(X \times Y) = \sum_{r=0}^{p} w_{r}(X) \times w_{p-r}(Y).$$

We prove this formula in $\S1$, assuming some facts on ordered triangulations that are proved in $\S2$. With these facts we also get as an easy corollary the product formula for the integral classes:

Corollary. Let K and L be triangulations of integral Euler spaces X, Y of dimension m, n. Then, if m + n - p is odd, $\sum_{r=0}^{p} (-1)^{mr} s_r(K') \times s_{p-r}(L')$ is an integral cycle that represents $w_p(X \times Y) \in H_p(X \times Y, \mathbb{Z})$.

J. Milnor has a different combinatorial proof of the product formula. There is also an argument due to C. McCrory and D. Sullivan that reduces it to the well-known formula for manifolds via "resolutions" of Euler spaces.

For other properties of the Stiefel-Whitney homology classes see [1].

1. Proof of the Theorem. Let K and L be triangulations of X and Y, and let $K \times L$ denote the *cell* complex whose cells are the product of a simplex in K with a simplex in L. The vertices of its first barycentric subdivision $(K \times L)'$ are the pairs (a, b) where a is a vertex of K' and b is a vertex of L', and are ordered by (a, b) < (a', b') if $a \le a', b \le b'$ and $(a, b) \ne (a', b')$. The simplices of $(K \times L)'$ are precisely the linearly ordered subsets, which we always write in increasing order.

Now the cross-product in homology is induced by the chain map (\mathbb{Z}_2 coefficients!) $C_*(K') \otimes C_*(L') \to C_*((K \times L)')$ given by

(2)
$$\langle a_0 \cdots a_p \rangle \otimes \langle b_0 \cdots b_q \rangle \mapsto \sum \langle (a_{i_0}, b_{j_0}) \cdots (a_{i_{p+q}}, b_{j_{p+q}}) \rangle$$

where the sum is over all pairs $i_0 \leq \cdots \leq i_{p+q}$, $j_0 \leq \cdots \leq j_{p+q}$ such that $\{i_0, \cdots, i_{p+q}\} = \{0, \cdots, p\}, \{j_0, \cdots, j_{p+q}\} = \{0, \cdots, q\}$, and for each r, either $i_r \leq i_{r+1}$ or $j_r \leq j_{r+1}$.

Let $\sigma = \langle (a_0, b_0) \cdots (a_p, b_p) \rangle < (K \times L)'$. We say that σ has a jump at *i* if $a_{i-1} < a_i$ and $b_{i-1} < b_i$. Then clearly $\sum_r w_r(X) \times w_{p-r}(Y)$ is rep-

240

resented by the sum of all $\sigma^p < (K \times L)'$ such that σ^p has no jumps. Now by the Proposition below, $w_p(X \times Y)$ is represented by $s_p((K \times L)') = \text{sum}$ of all $\sigma^p < (K \times L)'$. Thus if

$$c_{p} = s_{p}((K \times L)') - \sum_{r} s_{r}(K') \times s_{p-r}(L'),$$

then $c_p = \text{sum of all } \sigma^p < (K \times L)'$ such that σ^p has at least one jump, and the product formula is equivalent to the fact that c_p is a boundary.

We construct an explicit chain d_{p+1} such that $\partial d_{p+1} = c_p$. First we say that (a_i, b_i) is a *critical vertex* of $\tau = \langle (a_0, b_0) \cdots (a_{p+1}, b_{p+1}) \rangle$ if either

(i)
$$a_{i-1} < a_i = a_{i+1}$$
 and $b_{i-1} = b_i < b_{i+1}$, or
(ii)

(ii) $a_{i-1} = a_i < a_{i+1}$ and $b_{i-1} < b_i = b_{i+1}$.

We then define an integer (mod 2), $\nu(\tau)$, by $\nu(\tau)$ = number of critical vertices of τ of type (i) before the first jump. (If τ has no jumps, $\nu(\tau)$ is the number of critical vertices of type (i).) Let

$$d_{p+1} = \sum_{\tau^{p+1} < (K \times L)'} \nu(\tau^{p+1}) \tau^{p+1}.$$

Claim. $\partial d_{p+1} = c_p$. **Proof.** $\partial d_{p+1} = \sum_{\sigma} \lambda_{\sigma} \sigma$ where

$$\lambda_{\sigma} = \sum_{\tau^{p+1} > \sigma} \nu(\tau^{p+1}).$$

For each $\sigma = \langle (a_0, b_0) \cdots (a_p, b_p) \rangle$, the (p + 1)-simplices containing it are of the form

$$\sigma_{i;a,b} = \langle (a_0, b_0) \cdots (a_{i-1}, b_{i-1})(a, b)(a_i, b_i) \cdots (a_p, b_p) \rangle$$

(with the obvious definition of $\sigma_{0;a,b}, \sigma_{p+1;a,b}$). Then $\lambda_{\sigma} = \sum_{i=0}^{p+1} n_i(\sigma)$ where

$$n_{i}(\sigma) = \sum_{\substack{(a_{i-1}, b_{i-1}) < (a, b) < (a_{i}, b_{i})}} \nu(\sigma_{i;a,b})$$

In the computations that follow, we constantly use the fact that if x < y are vertices of K' or L', then each of the conditions z < x, x < z < y, y < z is satisfied by an even number of vertices z. (Cf. Lemmas 1 and 2 below.)

Let $k \ge 1$ be the first jump of σ . (Possibly k = p + 1, i.e., σ has no jumps.) First we show that $\lambda_{\sigma} = n_k(\sigma)$, i.e., $n_i(\sigma) = 0$ for $i \ne k$.

Consider the following cases:

(1) i > k. Then $\nu(\sigma_{i;a,b}) = \nu(\sigma)$ for all (a, b), and the number of $\sigma_{i;a,b}$ is even. Thus $n_i = 0$.

(2) i = 0. Divide the $\sigma_{0;a,b}$ onto three disjoint subsets according to the following conditions: $a < a_0$, $b < b_0$; $a = a_0$, $b < b_0$; $a < a_0$, $b = b_0$. In each subset, $\nu(\sigma_{0;a,b})$ is constant, and the number of $\sigma_{0;a,b}$ in each subset is even. Hence $n_0 = 0$.

(3) 0 < i < k. In this case either $a_{i-1} = a_i$ and $b_{i-1} < b_i$ or $a_{i-1} < a_i$ and $b_{i-1} = b_i$. If the first condition holds, then for all $\sigma_{i;a,b}$, $a_{i-1} = a = a_i$ and $b_{i-1} < b < b_i$. Thus $\nu(\sigma_{i;a,b})$ depends only on *i* (and similarly if the second condition holds). Hence, as above, $n_i = 0$.

Since $\lambda_{\sigma} = n_k$, the claim will be proved by showing that $n_k = 1$ if σ has jumps and 0 if σ has no jumps, i.e., it has to be shown that $n_k = 1$ if $k \le p$ and $n_k = 0$ if k = p + 1.

Suppose k = p + 1. Then $\nu(\sigma_{p+1;a,b})$ is constant on each of the three subsets $a_{p+1} < a$, $b_{p+1} < b$; $a_{p+1} = a$, $b_{p+1} < b$; $a_{p+1} < a$, $b_{p+1} = b$; and there is an even number of vertices in each subset. Hence $n_k = 0$ in this case.

Suppose $k \leq p$. Then $\nu(\sigma_{k;a_k,b_{k-1}}) = \nu(\sigma_{k;a_{k-1},b_k}) + 1$, and ν is again constant on each of the subsets (a, b_{k-1}) ; (a_{k-1}, b) ; (a, b) with $a_{k-1} < a < a_k$, $b_{k-1} < b < b_k$. Hence in this case $n_k = 1$.

The proof of the Claim is now complete.

2. Ordered triangulations. By an ordered triangulation of a polyhedron X, we mean a triangulation K of X together with a partial ordering on the vertices such that the simplices of K are precisely the linearly ordered subsets (e.g., the first barycentric subdivision of a cell complex). We always write the simplices of K in increasing order.

If a is a vertex of K, we write simply a^- for $\langle a \rangle_0 = \{b: b < a\}$, and a^+ for $\langle a \rangle_1 = \{b: a < b\}$. Let $|a| = 1 + \dim a^-$. If K is a finite complex, #(K) means the number of vertices of K.

Note that if K is an ordered triangulation, then we can define the Stiefel chains $s_b(K) \in C_b(K, \mathbb{Z})$ by the same formula (1).

If $\sigma = \langle a_0 \cdots a_p \rangle \langle K$, then $Lk(\sigma, K) = \sigma_0 * \sigma_1 * \cdots * \sigma_{p+1}$, where σ_i is the full subcomplex of K spanned by the vertices a such that $a_{i-1} < a < a_i$.

Lemma 1. Let K be an ordered triangulation of an integral (resp. mod 2) Euler space, and let $\sigma < K$. Then each σ_i is an integral (resp. mod 2) Euler space and $\chi(\sigma_i) = 1 + (-1)^{\dim \sigma_i}$ (resp. $\chi(\sigma_i)$ is even).

Proof. It is easy to see that $Lk(\sigma, K)$ is an Euler space, and hence that each σ_i is an Euler space. Since σ_i is the link of a maximal simplex in the join of the remaining σ_j 's, it follows that σ_i has the Euler characteristic of a sphere of the same dimension (cf. [2, §2]).

Lemma 2. If K is an ordered triangulation of a compact integral (resp. mod 2) Euler space, then $\chi(K) = \sum_{a \in K} (-1)^{|a|}$ (resp. $\chi(K) \equiv (\#(K) \pmod{2})$).

Proof. Note that

$$\chi(K) = \sum_{p} (-1)^{p} (\text{number of } p \text{-simplices } \langle a_{0} \cdots a_{p} \rangle)$$

$$= \sum_{a} \left\{ \sum_{p \ge 1} \left[(-1)^{p} (\text{number of } (p-1) \text{-simplices in } a^{-}) \right] + 1 \right\}$$

$$= \sum_{a} (1 - \chi(a^{-})).$$

But by Lemma 1, $1 - \chi(a^{-}) = (-1)^{|a|}$ (resp. $1 - \chi(a^{-}) \equiv 1 \pmod{2}$).

Lemma 3. If K is an ordered triangulation of an integral Euler space, then

$$\partial s_{p}(K) = (1 + (-1)^{n-p})s_{p-1}(K).$$

Proof. By Lemmas 1 and 2, this is the same as the proof of Proposition 1 of [2], replacing $Lk(a_i, a_{i+1})$ by σ_{i+1} .

Proposition. Let K be an ordered triangulation of X.

(i) If X is a mod-2 Euler space, then $s_p(K)$ represents $w_p(X) \in H_p(X, \mathbb{Z}_2)$.

(ii) Moreover, if X is an integral Euler space and n - p is odd, p > 0, then $s_{b}(K)$ represents $w_{b}(X) \in H_{b}(X, \mathbb{Z})$.

Proof. By Lemma 3, (ii) follows from (i). To prove (i), define a simplicial map $\phi: K' \to K$ as follows. If $\sigma < K$ and $\hat{\sigma}$ denotes its barycenter, let $\phi(\hat{\sigma}) = m(\sigma)$ where $m(\sigma)$ is the maximum vertex of σ . ϕ extends to a simplicial map that induces the identity in homology.

Now an easy computation gives (\mathbb{Z}_2 coefficients!)

$$\phi(s_p(K')) = \sum_{a_0 < \cdots < a_p} \alpha_{a_0 \cdots a_p} \langle a_0 \cdots a_p \rangle$$

where, if $\sigma = \langle a_0 \cdots a_p \rangle$,

$$a_{a_0\cdots a_p} = (\#(\sigma_0) + 1)(\#(\sigma_1) + 1) \cdots (\#(\sigma_{p+1}) + 1).$$

But by Lemma 2, $\#(\sigma_i) \equiv \chi(\sigma_i)$, which is even by Lemma 1. Thus $a_{a_0} \dots a_p \equiv 1$ and $\phi(s_p(K')) = s_p(K)$.

The first part of the Proposition was the only step missing in the proof of the Theorem. To prove the Corollary, let $\times: C_*(K', \mathbb{Z}) \otimes C_*(L', \mathbb{Z}) \rightarrow C_*((K \times L)', \mathbb{Z})$ be any chain map inducing the cross-product in homology; i.e., such that $\partial(x \times y) = (\partial x) \times y + (-1)^p x \times \partial y$ if $x \in C_p(K', \mathbb{Z})$. For example, we could use the same formula (2) with appropriate signs.

An easy computation then shows that if m + n - p is odd,

$$\partial \left(\sum_{r=0}^{p+1} s_r(K') \times s_{p+1-r}(L') \right) = 2 \sum_{r=0}^{p} (-1)^{mr} s_r(K') \times s_{p-r}(L').$$

Thus $\sum_{r=0}^{p} (-1)^{mr} s_r(K') \times s_{p-r}(L')$ is an integral cycle that represents the Bockstein of $w_{p+1}(X \times Y)$.

REFERENCES

1. E. Akin, Stiefel-Whitney homology classes and bordism, Trans. Amer. Math. Soc. (to appear).

2. S. Halperin and D. Toledo, *Stiefel-Whitney homology classes*, Ann. of Math. (2) 96 (1972), 511-525. MR 47 #1072.

3. D. Sullivan, *Combinatorial invariants of analytic spaces*, Proc. Liverpool Singularities Sympos. I (1969/70), Lecture Notes in Math., vol. 192, Springer-Verlag, Berlin, 1971, pp. 165-168. MR 43 #4063.

4. H. Whitney, On the theory of sphere bundles, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 148-153. MR 1, 220.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, ONTARIO, CANADA (Current address of Stephen Halperin)

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540

Current address (Domingo Toledo): Department of Mathematics, Columbia University, New York, New York 10027

 $\mathbf{244}$