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A GEOMETRIC CHARACTERIZATION OF FRECHET SPACES
WITH THE RADON-NIKODYM PROPERTY l

G. Y. H. CHI

ABSTRACT.  Let  F  be a locally convex Frechet space.  F  is said to

have the Radon-Nikodym property if for every positive finite measure space

(Q,Z,/x), and every /x-continuous vector measure  m : 2 -» F   of bounded varia-

tion,   there exists   an   integrable   function   /:   ß -» F   such   that   m(S) =

Jçf(p>)dfj.(&), for every S e 2.  Maynard proved that a Banach space has the

Radon-Nikodym property iff it is an  s-dentable space.  It is the purpose of

this paper to give the following analogous characterization:  A Frechet

space  F  has the Radon-Nikodym property iff F   is s=dentable.

0. Introduction.   In [8], Maynard obtained some equivalent geometric

conditions for the average range of a vector measure in the characterization

of Rieffel's Radon-Nikodym theorem [ll, Main theorem, p. 466].   Based on

these results, Maynard [9, Theorem 2.2] recently  extended Rieffel's [12,

Theorem l] condition  on the dentability of the average range to  s-dentabil-

ity of the average range.   It was shown in  [2], [7]  that all of these results

can be extended to locally convex Frechet spaces;   see §2.   As a conse-

quence, the geometric characterization of Frechet spaces having the Radon-

Nikodym property will be proved in  §3 below.

1. Preliminaries.   Let iiï, E, p) be a positive finite measure space,

where ß  is an abstract set, S is a  o~-algebra of subsets of 0, and p is a

real-valued measure defined on  S.   Without loss of generality, one can as-

sume that S is /i-complete.  Let  2    = \S e 1.\piS) > 0\.

Throughout this paper, let  F  be a locally convex Frechet space, and

11 = III  }°°_,   be a fundamental decreasing sequence of closed absolutely
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convex subsets which forms a  O-neighborhood base for F.  For  U £ Ll, let

P U  denote the associated continuous seminorm.

A function  /: 0 —' F is said to be simple iff / is of the form fico) =

S._.x.l. ico), V co £ fi, where  \SA"_. Ç S  are disjoint and \x.\"_. Ç F.   A

function f: Q. —-F  is said to be strongly measurable iff there exists a se-

quence of simple functions \f \"° ,   such that  fico) = lim     „/ ico), V co £ íí.1 r '22   22=1 ' 22—•00/ 22

Let jlKii, ft; F) = {/:   Q — F | / is strongly measurable!.   If  F  is a Banach

space, then JÍliíl, p;  F) is precisely the Bochner measurable functions.

Let / be strongly measurable, hence Borel measurable. Thus V U € Ll,

pyif) is Borel measurable. If V U £ U, f^pyif) dp < °° , then / is said to be

integrable. In this case define q¡jif) = Lp ¡j if) dp. Let £ (0, p; F) be the

space of all integrable functions, and let A. (Q, p; F)/R, where K =

\f£ £Híí, fi; F)\quif) = 0, V U £ 11|. lKí2, ft; F) is a Frechet space topolo-

gized by the family of seminorms [qAll £ ll|. If F is a Banach space, then

L  (iî, p; F)  is just the Banach space of Bochner integrable functions.

Let m: 2. —• F  be a vector measure.   For every   U £  Ll, the   U-variation

of m  over S is defined to be

in \

X PuimiS))\S. £ 1, disjoint,   I < i < n, S. C S\.

Vim, Ll)i- ) is an extended real-valued measure.  272  is said to have bounded

variation if  Vim, U)ÍW < °° , V U e II.  m  is p-continuous, denoted by  m «

p it piS) = 0,  S £ S, implies  272(5) = 0.   It is clear that m « p iff V U £ ll,

Vim, U)i-)<< IL. If / e LHîÎ, /j; F)   and /^(S) = /s/^, then pj is a vector

measure, and  V U £ ll, p,jipfiS)) < (spvif)dp, Vipf, U)iS) = $spuif)dp, and

/x, is of bounded variation.

For S £ Z,  , the average range of m  over S is defined to be the set

Asim) = \miT)4piT)\T £ I+, and   T Ç Si.

Let E be an arbitrary locally convex space, and D C E be a subset. D

denotes the closure of D, pF the ct(F, E )-closure, ciD) the convex hull of

D, and
/-   oc 00 00 \

5(D) =1 / ^ a.d]a. > 0,   ^ a. = 1, and   £ a.¿. converges, <i. e D, z > 1> ,
1¿=1    z  '    z ¿=1    ! ¿=i z '   '

the  s-convex hull of D,  It is clear that D Ç AD) C s(D) Ç AD).  D  is said

to have width at most  U iff D - D C U, i.e., pyix - y) < 1,  Vx, y e D.

Definition 1.1.   D C E  is said to be dentable [s-dentable] iff V (7 e ll,

there exists ¿ e D  such that d 4 ciD\\d + U\) [d 4 siü\\d + U\)].
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If D  is not dentable  [s-dentable], then any   U £ ll  such that V d £ D,

d £ c"(d\|cz'+ U]) [d £ siD\\d + U\)] is said to be a nondenting [non-s-dent-

ing] neighborhood for D.   If D  is dentable, then  D  is  s-dentable.   For the

proof of the following results as well as other properties of dentability and

s-dentability, see [2], [0L [lO], [l2l.

Theorem 1.1. Let  F be a Frechet space.   Every relatively weakly com-

pact subset of F is dentable, and hence s-dentable.

2.   Radon-Nikodym theorems.   Theorem 2.1 and Theorem 2.2 below are

proved in  [2l, [7].  For the Banach space version, Theorem 2.1 was due to

Rieffel [ll, Main theorem, p. 466], and Theorem 2.2 was due to Maynard [8,

Theorem 3.1, p. 457].

Theorem 2.1.  Let  (Í2, 2., p) be a positive finite measure space, and F

a Frechet space.   Let m: 2.  —> F  be a vector measure.   Then m = p, for some

f £ L HO, ft; F)  iff
(i)    222  «  p,

(ii) 272 has bounded variation,

(iii) 222  has locally relatively compact [or s-dentable]  average range,

i. e., V S e S   , there exists  Tel  ,   T C S  such that ATim)  is relatively

compact [or s-dentable].

The next theorem will be used crucially in the proof of Theorem 3.1.

Theorem 2.2. Let (Q, 2, p) be a positive finite measure space, F a

Frechet space, and m:2. —Fa p-continuous vector measure of bounded

variation.   Then the following conditions are equivalent:

(i) given S £ S   , there exists  T £ 2  ,  T C S such that A Am)  is

relatively compact.

(ii) given S £ X , and U £ u, there exists T e I , T C 5 such that

A Am)  has width at most  U, i.e., AAm) - AAm) Ç U.

3. On Frechet spaces with the Radon-Nikodym property. As in the case

of Banach spaces, the concept of s-dentability provides a simple character-

ization of Frechet spaces with the Radon-Nikodym property.

Definition 3.1. A Frechet space  F  is said to have the Radon-Nikodym

Property,  RNP for short, iff for any positive measure space  (fi, S, p)  and

any  272: X —> F, /x-continuous vector measure of bounded variation, there ex-

ists / £ L (0, p; F)  such that  m = p ,.

The following lemma will motivate the next definition as well as the

main theorem.   For a proof of this lemma, see [7, Corollary 3.2].
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Lemma 3.1. Let (0, S, p)  be a positive finite measure space, and m:

S—>F a p-continuous  vector measure of bounded variation;   then m has lo-

cally bounded average range,  i. e.,  V S £ X  ,  there exists T £ Z  , T C 5

such that AAm)  is bounded.

Definition 3.2. A Frechet space  F  is said to be  s-dentable iff every

bounded subset of  F  is  s-dentable.

Now the main result will be proved.  The proof will be given in several

stages and contains a modification of the proof presented in L9> Theorem 3.1L

Theorem 3.1. A Frechet space F has the Radon-Nikodym property iff F  is

s-dentable.

Proof.   Necessity follows from Lemma 3.1 and Theorem 2.1.  To prove

sufficiency, it will be shown that one can construct a positive complete fi-

nite measure space  (Í2, 2., p), and a /^-continuous vector measure  m: Z, —*F

of bounded variation such that 227 has no Radon-Nikodym derivative.

Stage 1.   Construction of the measurable space (Í!, X).  Let Q = [O, l)

with the Euclidean topology, and let  I27  | be an increasing sequence of

infinite partitions of [O, l)  having the following properties:

(i) 77   = JA"|  eN„,  where N  is the set of positive integers, and Anz =

l<, bn).
z'     z

(ii)  For every  n £ N, and every  z £ Nn, b" + l. = a? + 1   ...
7 ' ' (Z,l) (Z,2+1)

(iii)  For every  n £ N, and every  z £ Nn, A"z = IJÎll^U ¿)>  where

iz, 1) N" x N.

Let 77 =(J   _ 27  , and let  J\„   be the ring generated by  27.  It should be

noted that 77  is countable and is not a semiring.  It is easy to see that

(1)  ft0=|5ius215i= U V'.*2= U
00 r .+ 1

1 I   A «
>i      (z.,i)
1=P; I

StriS  m0

\

and that ÂQ is 720/ an algebra.   Let 9\  be the algebra generated by  77. It

should be pointed out that neither ÂQ  nor ÍR  contains a base for the Eu-

clidean  topology of [O,  l). However, iRQ   does contain a base for the right

half-open  interval topology on  [O, l), which is strictly finer than the Eu-

clidean topology [6, p. 37].  Let 5) be the ¿»-ring generated by  77, S the 8-

ring generated by compact subsets of  [0, l) (S  is called the family of rela-

tively compact Borel sets of [O, l)   in [5, p. 287]). Let

(2) e=-,SÇ [0, 1)|5 n b eS, VB e%\.
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C is a a -algebra [5, p. 290].  One has the following inclusion relations:

(3) 77ÇÎR0ç3)çiEça(iR0)= a(iR)çe.

Note that ÍR <¿ ÍB , since   [O, l) 4 S.  The third inclusion is seen as follows.

Let   [a, b) C  [0, l).  Let  a. = a, a < b . < b  such  that   b . < b .,  i < i and'—    L' 2 2 I I '

lim.      b. = b.  Then  [a, b) = 11°° ,[«., H-  However, [a., b .] £ % [a.,  b .]
/_-90    2 L      ,        / V^Z_1L      2 2 '   L      2 2 2'        2

C [a, b]  £ 53, so by property (4) of [5, p. 4], [a, b) £ ®.  This implies that

77 C 53.  But ÍB  is a S-ring, so X C ÍB.  To see the fourth inclusion, recall

that every open subset  V Ç [0, l) has the structure

(4) V = [0, b) U   U  («,-. b.),

where  [0, b) £ n, ia., b.) Ç [0, l).  However, V ¡ > 1, (ajf ¿>.) = U/liKyM'

where  a . < a .. < b ., b .. = b ., V / > 1, and  lim .       a .. = a ..   Thus every open
2 2/ 2 2/ I '   —       ' /—'OO      IJ I ' r

subset of [0, l) is in  ct(ÍR).  Now if  K C [0, l) is a compact set, then

[0,1)\k e o<fR).  This implies   K 6 <r(iR), hence  33 C ct(50.  The definition of

z\ will be given in Stage 3.

Stage 2. Construction of p and 277 on ÍR . Let D C F be a nonempty

bounded not s-dentable set. There exists then U £ ll, and a > 0 such

that

(a) U    is a non-s-denting neighborhood for D, i.e.,   Wd £ D, d e

siD\\d+ U0\), and

(b) D C aQU .

One defines  ft and  277  inductively on  27 as follows:

(i)   Let d    e D  be arbitrary.   By (a),  there exists  a    > 0,   1 > 1,

2" ,at? = 1, and  UiM7=1 Ç D\!¿0 + L/0S  such that   dQ = Í°¡^\d\.  On  „v

define piA I ) = a î, and m(A ? ) = a ^ í, /' > 1.

(ii)   Now suppose that ft  and  222  have been defined on  27    such that

V27 e N, and   Vz £ N",  miAp/piA^) = dnz £ D,   VA^ £ nn.  Since  D  is not

s-dentable, there exists  a**^ > 0,1^^"^ = l/and W^Jj £, Ç

D\|<f + fJ.Î  such that ¿n = 2°° ,a" + \d"+1.,.  Define
Z 0 Z 2 = 1       (Z,2)       (Z,2)

ft(A"+ »..) a a"+ \,    and    272(A ?+ »..) = a"+1/ »+},.
^        (Z,2) (z,¡) (Z,2) (z,2)    (z.2)

Observe that

(5) -K^^K^-^y^V^o-

By induction, p and   777 are thus defined on all of 77  satisfying the crucial

"horizontal" countable additivity property:   VA" £ 77,
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piAz)=Z piA»^)    and     miA») = £ mÍAn¿]¿.
2=1 t=l

Now and 277  will be defined on 3L   as follows:  Let

Ua
2=1 ■'

and    S    =  U     U  ¿ '
-•-«     '" (Z.,7)2=1     pep.

such that S. H S 0 Define

"1

k.. 1

(7) ^-Zf**/)
2=1 l

Using (6)  and (7), one can define

and m(Sj) Z >7¡(A   0.
Z .

2=1 *

(8)

(a)

(b)

piSA

miS2)

n2

z
2=1

2=1

MA)

p.-l

Z   p(A
7=1

r.+ l

(«,.i)

i

and

prl

AAzA- Z
i j= 1

j(A
r.+l

2 I
I-  ot(^2)Finally define piS. U S A = piS A + piS A, and miS   U S  ) = 722(5',)

where the right sides of the above  equations are defined by (7) and (8).

It is easy to check that ft and  277  are finitely additive on  J\n, and that

ft is a positive set function of bounded variation.  In fact, the variation of

p is bounded by 1.  Furthermore, by first proving for sets of 77 then for sets

of Â    by using the definition of 7?2

can show that V U £ ll, there exists

on  77 and the structure of J\  , (1), one

au > 0  such that

(9) p., (722(A)) <a piA),       y A e!Rn

Stage 3.   Extension of p and  222.  Using the "horizontal" countable ad-

ditivity property (6)  and the structure of 77 , one can prove that p is regular

on  77 relative to  5\  , i.e., V A   £77, and   V e > 0, there exist  C, V £%   such

that  CCA  C Vo, and piH) < c, V H £ íRQ, H Ç Ac (see [9, p. 11]).  Then

knowing the structure of Â  , and (1), one can prove by direct computation

that ft is regular on  5\    relative to  3\    (this was termed regular  R     in  [4,

p. 508]).  Hence by Theorem 3 of [4, p. 510], p is countably additive on  S  .

By the Caratheodory extension procedure, p can be extended to a unique

finite positive measure  ft    on  c(ft), the class of ft-measurable sets  [5,

Corollary 4, Proposition 6, p. 72,  Definition 3, p. 67].  Since p.   is finite,

S(fi),the class of ft-integrable sets coincide in this case with  Cip), and p.



A GEOMETRIC CHARACTERIZATION OF FRECHET SPACES     377

is a complete measure on  lip) [5, Proposition 12, Definition 6, p. 75]. Fur-

thermore,^,   is p -dense in  ~2.ip), i.e.,V  S £ 2^ip), and V e > 0, there exists

B £%     such that pA.S A B) < e [ 5, Proposition 13, p. 76].  It should be em-

phasized that the extension procedure need not preserve regularity!  Hence

p.  need not be regular on  zip), in fact, ft,   need not even be regular on

cr(5\), in the sense that VS e ai%  and V e > 0, there exists  C, V Ç [0, l)

such that  C Ç S CV°, and piH) <(,VHe ct(5\), H Ç v\c, without the re-

quirement that C, V £ a($).

Let S(ft)  be denoted by  X, and ftj   again by p.  Since  p is countably

additive, (9) and Lemma 1 of  [4, p. 506]  implies that  277  is countably addi-

tive on  J\0.  Since  F is complete,  ft  is countable additive, and J\n  is ft-

dense in 2, one can prove (analogous to the proof of Theorem 1, p. 62 of

[5]) that 272  can be extended to a measure  m.:2. —• F  such that V U £ U,

there exists   a^ > 0  such that

(10) P^mp)) < aLJpiS),       WS el

Since ft is of bounded variation on  2., it follows from (10) that  272 j  has

bounded variation on  X.   Again  772,   need not be regular on  2-, or on  o"(j\).

Let 722,   be denoted by  722.

The restriction of ft  to  53 is a positive finite measure, so by Corollary

2 of [5, p. 347], p: 3 — [O, l]  is a regular Borel measure (i.e., V B £ 33

and t > 0, there exists  C, V Ç [O, l)  such that  C Ç B Ç V°, and piH) < er, V

H £ 33, H Ç V\C). Now from (10) and Lemma 3 of [4, p. 509], 772: 33 — F is

a regular Borel measure of bounded variation.  However, the regularity of 277

on 33  will not be needed.

Thus one has constructed a measure space (ÎÎ, S, ft)  and a ft-continuous

vector measure m: S —• F of bounded variation such that the restrictions of

ft and  277  to  33  are regular Borel measures.

Stage 4. m 4 Pp for any / £ L (0, p; F). It suffices to show that VS e

SB , A Bim) has width at least ViUq. (In fact, it should be pointed out that it

is not necessarily true that every  S £ er(5\)   , A^im) has width at least ViLS^A

Let B £ 33  .   By regularity of ft on  53, one can find a compact  C and an

open   V  such that

(i)  C ÇBÇ Vo,

(ii) ft(tf) < (l/l6a0)ft(B), V H £ 33, H Ç v\c, where D Ç aQUQ.

Now by the third and fourth inclusions in (3) and Proposition 7 of [5j

p. 73], one has

(iii) fi(AO < (1/16 a0)ft(B), where  D Ç aQU0.
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Now by the structure of  V, and (4), there exists  ÍA.|°^. C 77  such that

(w) cçur=!A-çv-
There exists at least one A .     such that

(11) piA\B)/piA. ) < 1/8CL.
0 0

Let G = A.   O  ß e 53.   Then   G Ç B, and ft(G) > 0.  Since  A.    £ 77, by taking

the next partition of  A. , there exists disjoint \C,\T.   such that  A.    =

U> _,C, .  Claim that there exists  C     such that

(12) .       pic\,B) < U48a0)piCn).

For otherwise,

Ü ick\B)\ >J- E^)^^,)

which contradicts (11).

Let H = C    O ß  e 53.   Since  C,   belongs to the next partition of A¿  ,

by (5),

(13) pa0^M20)/^20) - miC)/piCn)) > 1.

Direct computation shows that

(14)      "oUta   iAAt)J 4 »efUon   p(c„y *

Thus,

(I  A \ \
miA^     miCj\

piA t)    piCjJ

p h^ ™±<A p (am mlcA\
Uo\piA.Q)      piG)j       uo\iAH)      piCn)j

> 1- 1/4- 1/4   (by (13) and (14))

> 1/2.

Thus,

(15) 272(G)/piG) - miH)/piH) 4 Y2 U0.

Thus  V ß  £ 53  , Ar(tt7) has width at least Mllç., so by Theorem 2.1
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and Theorem 2.2, 772 ¡£ ft., for any / e L  iii, p; F).  For if there exists such

an  /, then by Theorem 2.1 and Theorem 2.2, V S £ X  , V U £ ll, there ex-

ists  T e 2  , T C S  such that At(?7î)  has width at most  U.   This should

hold in particular for every  B  £ 53   Cct(5\)+. In view of (15), this is not pos-

sible for U = Vi UQ.   For suppose there exists  T £ ff(5\)+,  T Ç ß, such that

AT(7?7) has width at most Vi UQ.   But by the definition of C, (2), and the

last inclusion relation in (3), T £ 53  , and hence by (15), A^(272) has width

at least ViLQ, hence a contradiction.     Q.E.D.

As a corollary, one deduces the following result of [7].

Corollary 3.1.  Every reflexive Frechet space  F has the  RNP.

Proof.   If F  is a reflexive Frechet space, then by Theorem 5.6 of [ll,

p. I45], every bounded set DC F is relatively weakly compact.   By Theorem

1.1, D  is  s-dentable, and so by Theorem 3.1, F has  RNP.     Q.E.D.

Remark 3.1.   The above corollary holds, in particular, if  F  is a nuclear

Frechet space, or separable dual of a barreled (DF)-space, or Fréchet-Montel

space.

Remark 3.2.  Corollary 3.1 shows that in a reflexive Frechet space, every

bounded set is dentable. Whether this remains true if  F  is   s-dentable is

still an open question.  A related question is whether  F has  RNP  iff F is

dentable,   These are known to be true for Banach spaces.
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