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ExtU, T) AS A MODULE OVER   End (T)

S. A. KHABBAZ AND E. H. TOUBASSI

ABSTRACT.    In this paper we show that for abelian groups  A   and

T,  where  A   is of finite rank and   T  is torsion, the   End (7')-module

Ext(/4,  7")  is finitely generated or is of finite rank.

1.   Definition.   Let  M  be a left  /^-module.   We shall say that  M has

rank at most  n if and only if every finitely generated submodule of  M is

contained in one generated by n elements.   It has rank n if, in addition,  n

is the least integer for which this holds.   In this case we write  rM = n.

We remark that our definition of rank is the one used by Prüfer in his

fundamental work [7] on torsion groups.   This definition is given again in

[4, p. 49].   It is equivalent to the usual definition for torsion-free and

p-groups,  and to that of reduced rank as given in [l, p. 34],

We note that this notion of rank has the following properties:

1. If  M  is a finitely generated abelian group (R = Z),   rM coincides

with the number of elements in a canonical basis.

2. If  M  is a torsion-free abelian group,   rM  is the dimension of   M ®_ Q

over the field  Q of rational numbers.

3. For any  R,  the rank of a homomorphic image of  M does not exceed

that of M.

4. For  R-modules M.,  if rM. < k., then  K©"=1 M.) < S*=1 k..

5. Abelian groups of finite rank are characterized by the following:

Theorem 1.1.   (i) A  is of rank at most  n  {over Z) if and only if it is a

subquotient of the direct sum of n groups each isomorphic to  Q.

(ii) A   is of rank at most n  if and only if it is embeddable in a divisible

group of rank n.

Proof,    (i) follows from (ii) which is easy.

Note that it is possible for a group of finite rank to be an infinite direct

sum of nonzero groups.
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In what follows, the abelian groups  A  and   T will be considered as

left modules over  Z,  whereas  Ext(A, T) will be considered as a left module

over End(T),  the ring of endomorphisms of  T (see [5, p. 143]).   As the

proofs in  §2 show, the results of this section apply equally well to

Pext(4, B) in place of Ext (A, B), (see [3]).

When considering  Ext (A, T) as a left module over End(T), the question

arises whether it is finitely generated.   The following lemma shows that

even in special situations this is not the case.

Lemma 1.2.    Let  T be a direct sum of cyclic p-groups of unbounded

order; then  Ext (Q, T) is not a finitely generated End(T)-module.

Proof.   Suppose  Ej, •<• , E    generate  Ext (Q, T),  and let X. be the

middle groups of these extensions.    By [6], [8] we know that there exist

extensions  E:0->T->X-><2->0 where the  p-Ulm sequence of X is smaller

than those of the   X. for all  i.   One such   X is given as follows.   If the
z °

pointwise minimum of the equivalence classes representing the  p-Ulm

sequences of  X. is equivalent to the sequence  \a>, co + I, co + 2, • • • \,   it

is easy to see that such an  X exists with its p-U\m  sequence finite since

T is a direct sum of cyclic groups of unbounded order.   However, if the

minimum of the  p-Ulm sequences of  X. is a sequence of integers,  one con-

structs the desired  X as in  [8].   Now if  E = 2.™    a.E.,  then the  p-Ulm

sequences of  E and  ?"_, a.E. would be equivalent.   However it is not

hard to see that both the module action of  End(T),  as well as the addition

of extensions, do not decrease the  p-Ulm sequence.   Thus the equality

E = 2"    a .E. contradicts the choice of E and therefore   E ,,•••, E    do
l=l     1    l In

not generate  Ext (Q, T) as claimed.

Although, in general,  Ext (A, T) is not finitely generated, we will show

that locally it is finitely generated.   Moreover we shall give a sufficient

condition for  Ext (A,  T) to be finitely generated.   We prove the following:

Theorem 1.3.    rExt(A, T) < 1  whenever A  is any countable group and

T is an unbounded reduced primary group.

Theorem 1.4.   // T is torsion, then rExt(A, T) < rA,  for any A  with

rA finite.

Before   stating the next theorem, we remark that when  T is a torsion

group of unbounded order (Theorem 1.3 and Theorem 1.5 with infinitely many

primary components nonzero),  Ext (Q, T) is (additively) an uncountable

direct sum of rational groups.
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Theorem 1.5.   // T is torsion, with each primary component of it being

bounded, and if A  is any abelian group with rA < n,   then  Ext (A, T) is

generated as an  End(T)-module by n  elements.

Whenever these modules turn out to be finitely generated we exhibit the

generators.

2. Proofs of the theorems. For the notions of basic subgroup, final

rank, etc. consult [2],

Theorem 1.3 is a special case of the following:

Theorem 2.1. For torsion groups T, rExt (A, T) < 1 whenever the final rank

of B , a basic subgroup of the p-primary component T , is > |A| for all

primes p with T   ^ 0,  where   \A\   is the cardinal number of A.

Proof.   The  End (T)-module Ext (A, T) is a quotient of a module of the

form Hom(E, T),  with  rF< \A\,   and   E free.   Here   rF = dim-E ®z Q,  as

is consistent with our definition when the rank of  E is finite.   The result

now follows from Remark 3 and

Lemma 2.2.   Let  T be a torsion group and F a free group.   If rF < final

rank of B    for all p with  T   ¿ 0 then the rank of Horn (E, T) over End(E)

is at most one.

Proof.   We shall give a proof in the case   T is  p-primary, as the general

case is a modification of this proof.   We have to show that given   a, ß £

Hom(E, T) there exists aye Hom(F, T) and  t, s £ End (T) such that

sy = a, ty = ß.

Let S be a basis for   E.   We construct a countable number of subsets

S., i = 1, 2, 3, • • • , of  T as follows.   For each x £ S if max(o(a(x)), oiß{x))) =

p", put an element of order   p"  in S .   Observe that  \S.\ < rF.   Let  B  be

basic in T and write  B = ©°°=1B¿, where  fin r(B.) = fin r{B).   Since

fin r(B .) = fin r(B) > rF there exists an injection o. from S. to the set of
i — ' i i

generators of B . of order > p1.

We are now ready to define the homomorphisms  s, t,   and  y.   Let  x £ S.

As above  x determines an element of  S    for some  n which in turn deter-
n

mines an element  b £B     under a .   Now define  s,,  t,: B—>T by  s Ab) =
n n 11 J      1

aix), t Ab) = ßix).   Send the remaining generators of  B  to zero.   By a

theorem of Szele, see [l, p. 106], there is a surjection cú: T —* B.   Let y:

F —» T be defined by yix) £ co~  (b).   Then clearly  s = s .cù  and  t - t .cú  are

as required.
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Alternatively one can replace T in Lemma 2.2 by G ©E. where G is

arbitrary and  E    free with  rF   > rF.

Proofs of Theorems 1.4 and 1.5.     We may assume that   T is reduced.   Let

rA = n.   By Theorem 1.1,   A may be embedded in a divisible group  D of the

same rank  n,  say  D = D , © • < *  © D  ,  each  D. having rank 1.   (Note that

D. need not be indecomposable.)   Since the  End(E)-homomorphism

Ext (D, T)—>Ext(A, T) is onto, it is sufficient by Remark 3 to demonstrate

the theorem for  D  in place of  A.   Moreover by the additivity of  Ext  and

Remark 4, it suffices to give the proof for D of rank one.

Case I.   D -@pZ{p°°)  where p  ranges over different primes.   Then

Ext(D, T)= Ext (®Zip°°), T) =  U^tiZip00), T)=Y[Ext(Zip°°), T),

T    being the  ^-primary component of  T.   If  T    is bounded, then the iso-

morphism Ext {Z{p°°), T  )~T    is an  End(T  ) isomorphism.   Since   End(T)

acts on  Ext (Z(p°°), T  ) via the natural projection  End (T)—>End(T  ),  and

since in this case   T    is clearly cyclic over  End (T  ),  it follows that

ExtiZip   ), T )   is  cyclic  over   End(T).    If   T     is  unbounded,  then

rExt {Z{p   ), T ) < 1  by Theorem 1.3.   The conclusion now follows from the

following two facts:

1. Each Ext {Zip00), T ) is cyclic or of rank <1  over  End (T ),

depending on whether   T    is bounded or not.

2. Each   T    is fully invariant in  T so that   End(T)= II   End (T)

acts componentwise on  II   Ext(Z(/>   ), T  ).

Case II.   D - Q.   Consider the injective resolution of  Z of the form

0—>Z—><2—> Q/Z—>0.   Thus we have an exact sequence

ExtiQ/Z, T) -♦ Ext(Q, T) — Ext(Z, T) = 0.

Since   Q/Z is torsion, divisible and  rQ/Z = 1,  it follows by Case I that

Ext {Q/Z,  T) is cyclic or of rank  < 1,  depending on whether all the

p-primary components of  T are bounded or not.   Thus the same holds for

Ext(g, T), this being an End(T)-homomorphic image of Ext (Q/Z, T).   This

completes the proofs of Theorems  1.4 and 1.5.

We give two examples. The first shows that one cannot strengthen the

conclusion of Theorem 1.3 from locally cyclic to cyclic. In addition to the

examples provided by Lemma 1.2,  when  T = ©°° ,Z{p') and  A = ®     Z{p)
1 = 1 R0

(or A = Zip) ®Z{p) or A = Zip)), then Ext (A, T) is not cyclic over End(E).
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Moreover when  A = Zip) © Zip),   T = Zip"),  n £ N,  then   rExtU,   T) = 2

and, thus, Theorem 1.4 holds with equality rather than inequality.

We now produce generators for  Ext{A. T) as stated in Theorem 1.5.

From the proof we see that we only need to do this for two cases: (I) A =

Z{p°°)  and   T a bounded  p-group, and (II) A = Q and   T = ©SE    where   T

ate bounded  p-groups for all  p.

Case I.   A = Zip   )  and T a bounded p-group.    Consider the exact

sequence   V: 0 —>Z-^>0   -i Zip00)—.0,  where   Q   = \n/pi \n. i £ Z\.   Let  pk

be the bound on  T.   Then   T = T y® Z{pk).   Consider  EQ e Ext {Z{p°°), T),

E0: 0 — T1 © Z(pk) -Ú T, © Qp/(/>fe> i  Z(p°°) -» 0,

where z'|_    =/  and  /(0, 1)= (0, 1),  where   1   denotes the coset of 1 in

Qf,/(P   )  ana  V is tne projection.   We claim  E,  is a generator.   Let

E e Ext(Z(/z°°), T).   We need to produce an  a e End(E)  such that  afi. = E.

Let  E: 0 — 7\ ®Z(ffe)-A'^Z(f°°)-.0.   Consider the diagram

>T     ©    Z(/)

E<:0_vT.   ©   Z(p*)

E   : 0-¡.T.   ©   Z{pk)

ÏY

Y

0

where  N = |(x, r) | ct(x) = 77(r)S  and  Er] = E" is the split extension since

T. ©' Z{p  )  is a pure bounded subgroup of  N.   It is easy to see that

op ,cßi, - 77,   so op .cßi A - 0 which implies there exists a unique   ce Z—>

T x® Z{pk) suchthat yfa= p^i^.   This implies  E=aT.   Set y = p cßi.
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Observe that  (p  ) C kernel y,   so we get  y: Q /(p   )—>X.    Moreover

a: Z -> T, © Z{pk) induces  a e End (T) defined by a| T   =0 and  a(0, 1 )
_ 1
a(l).   Now the diagram

E0: 0-yT,   ©   Z{pk)

a

Zip00) -> o

E  : 0-yTj   ©   Z{pk) -

commutes where we set  y\T

X
->   X Zip00) 0

0.   This implies   E = O.E.  as desired.

Case IL   A = Q, T = ©  T    where  T    are bounded p-groups.    Let   P

be the set of all primes.   Write  P = Aj u ^2,  where Aj/jp e P|Tp ^ 0|

and  A2 = P\A  .   For p. eA      let p)i  be the bound on   T    .   Define a
i

group G by generators and relations.   Let the generators be  g, g.. over
k ''

all primes  p. £ P and / e N and the relations p.'g - p{giv PigiiJ- + 1 - g{j

for all  p. e Aj  and j £ N; g - p.gn, P¡gipj + l - gf;- for all  p¿ e A2  and

/ e N.    Observe that the torsion subgroup of  G,  T{G) = ©    £A Z{p.1) and
, Z 1

G/T{G)^Q.   Since  Ep    is bounded by f>. « so  Tp   = T¿ © Z(í>N).   Hence

E0: 0^T^(©    £A T' )© G^Q->0 is exact.   We now show that EQ

is a generator.   Let E: 0—«T—> X—»Q—>0 be exact.   Choose x e X such
k

that rj(x) = 1.   Since  X/T^Q and p.'T   =0 there exist elements x.. eX such

that p.lx = px.y p{xi .+1=x.. for all p. eA,  and ; e zV.   Moreover for all p. eA,

and i £ N there exist elements x    £ X such that x = p.x.,, and ö_x.  ., .= x...   Ob-
ij ri zl *« !.; + l      ii

serve that the homomorphism /: (©   „    T' )© G —X defined by /1 T'   =0,
r P;-eA[  P¿ *fp¿eAi'P¿

/(g) = x, fig..) = x.. makes the diagram

E0:0 r. \©G

3'/

E   : 0.
Y

^E
X

■ e

X ^0

commute.   This implies /E0 = E as desired.
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