SOLUTION OF A CONVERGENCE PROBLEM IN THE THEORY OF T-FRACTIONS

ROLF M. HOVSTAD

ABSTRACT. Let f be a function, holomorphic in |z| < R, where R > 1, normalized by f(0) = 1, and satisfying a boundedness condition of the form |f(z) - 1| < K. It is proved that a certain modification of the Thron continued fraction expansion of f converges to f uniformly on any $|z| \le r < R$.

Introduction. In 1948 Thron [1] introduced continued fractions of the type

(1)
$$1 + d_0 z + \frac{z_0}{1 + d_1 z} + \dots + \frac{z}{1 + d_n z} + \dots$$

They are called T-fractions. By definition, the T-fraction (1) converges for $z = z_0$ if

$$\lim_{n \to \infty} \left(1 + d_0 z_0 + \frac{z_0}{1 + d_1 z_0} + \dots + \frac{z_0}{1 + d_n z_0} \right)$$

exists. T-fractions have been studied in [1], [2] and [3]. If we put

(1')
$$1 + d_0 z + \frac{z}{1 + d_1 z} + \dots + \frac{z}{1 + d_n z} = \frac{A_n(z)}{B_n(z)},$$

then A_n and B_n can be written as polynomials determined by the recurrence formulas

$$A_{-1}(z) = 1, \qquad A_{0}(z) = 1 + d_{0}z,$$

$$A_{n}(z) = (1 + d_{n}z)A_{n-1}(z) + zA_{n-2}(z),$$

$$B_{-1}(z) = 0, \qquad B_{0}(z) = 1,$$

$$B_{n}(z) = (1 + d_{n}z)B_{n-1}(z) + zB_{n-2}(z), \qquad n \ge 1$$

Received by the editors December 21, 1972 and, in revised form, January 21, 1974.

AMS (MOS) subject classifications (1970). Primary 30A22, 40A15.

Key words and phrases. Holomorphic function, T-fraction expansion, modified T-fraction expansion.

Copyright © 1975, American Mathematical Society

R. M. HOVSTAD

Let f_0 be analytic for z = 0 and $f_0(0) = 1$. The sequence $\{f_n\}_{n \ge 0}$ is given by

(2)
$$f_n(z) = 1 + (f'_n(0) - 1)z + z/f_{n+1}(z), \quad z \neq 0,$$
$$f_{n+1}(0) = 1,$$

and f_n is analytic for z = 0. If $d_n = f'_n(0) - 1$, the T-fraction (1) is called the T-fraction expansion of f_0 .

In [4] H. Waadeland proved: There exists an $R_0 > 0$ such that $R > R_0$ implies the existence of a $K_R > 0$ with the property: If f_0 is analytic for |z| < R, $f_0(0) = 1$ and $|f_0(z) - 1| < K_R$ in |z| < R, then the functions f_n given by (2) are all analytic in |z| < R. Furthermore, $\lim_{n \to \infty} d_n = -1$. It is also shown that $R_0 \ge 1$. The smallest value for R_0 given in [4] is $R_0 = 3/2$.

The quoted result on the sequence $\{f_n\}_{n \ge 0}$ is used in [4] to prove that the corresponding *T*-fraction expansion of f_0 converges to f_0 locally uniformly in |z| < 1. It is pointed out in [5] that this *T*-fraction expansion never converges to f_0 in a larger disc.

In order to provide convergence in a larger disc a modification of the Tfraction expansion is studied in [5]. This modification is established by replacing the approximants (1') by modified approximants

(3)
$$1 + d_0 z + \frac{z}{1 + d_1 z} + \dots + \frac{z}{1 + d_{n-1} z} + \frac{z}{1 + (d_n + 1)z} = \frac{A_n(z) + zA_{n-1}(z)}{B_n(z) + zB_{n-1}(z)}$$

Under the conditions on f_0 quoted above, the sequence of modified Tapproximants converges to f_0 locally uniformly in the disc |z| < 2R/3. The question is raised in [5] whether this result can be extended to a result on convergence in the whole disc |z| < R. It turns out that the crucial point in the solution of this question is the rate at which f_n tends to 1. The purpose of the present paper is to give an affirmative answer to this question.

A basic convergence property of the sequence $\{f_n\}_{n \ge 0}$. We proceed to prove the following basic result on the sequence $\{f_n\}_{n \ge 0}$, defined by (2).

Theorem 1. Let R > 1 and choose γ such that $1 < \gamma < R$. Then there exists a $K_R(\gamma) > 0$ such that if f_0 is analytic in |z| < R, $f_0(0) = 1$ and $|f_0(z) - 1| < K_R(\gamma)$ in |z| < R, there exists a constant $C_R(\gamma) > 0$ (independent of n and f_0), such that

(4)
$$|f_n(z) - 1| \leq C_R(y)(y/R)^n$$

for |z| < R and $n \ge 0$.

The inequality (4) implies that all f_n are analytic in |z| < R and, by Schwarz' lemma, $\lim_{n\to\infty} d_n = -1$. Besides, $\lim_{n\to\infty} f_n(z) = 1$ uniformly in |z| < R. It should be mentioned that (4) fails to hold in the case $R \le 1$ (see [4]). The following proof originated from an analysis of [4, pp. 13-15].

Proof of (4). Let $\int_0^\infty (z) = 1 + \sum_{q=1}^\infty a_q z^q$ for |z| < R. Using (2) we obtain for $n \ge 0$

$$f_{n}(z) = \left(1 + \sum_{q=1}^{\infty} a_{q}(n)z^{q}\right) / \left(1 + \sum_{q=1}^{\infty} b_{q}(n)z^{q}\right)$$

(for z in a region Ω_n containing z = 0), where

(5)
$$a_{q}(n+1) = b_{q}(n), \quad a_{q}(0) = a_{q}, \quad b_{q}(0) = 0,$$
$$b_{q}(n+1) = a_{q+1}(n) - b_{q+1}(n) - b_{q}(n)(a_{1}(n) - b_{1}(n) - 1).$$

If for $n \ge 0$ and $q \ge 1$, $c_q(n) = a_q(n) - b_q(n)$, the recurrence formulas (5) show that (for $n \ge 1$, $q \ge 1$)

$$c_q(n+1) = -c_{q+1}(n) - c_1(n) \sum_{k=1}^n c_q(k).$$

Using this and $c_q(0) = a_q$, $c_q(1) = -a_{q+1}$, we obtain for $q \ge 1$ and $n \ge 0$

$$c_q(n) = (-1)^n a_{n+q} + s_q(n),$$

where $s_q(n)$ is a linear combination of products (with at least 2 factors) of the numbers a_1, a_2, a_3, \cdots . Therefore we obtain for $n \ge 0$

(6)
$$f'_{n}(0) = c_{1}(n) = (-1)^{n} a_{n+1} + s_{1}(n).$$

Let $\mathcal{F}_0(K)$ be the family of functions f_0 such that f_0 is analytic in |z| < R, $f_0(0) = 1$ and $|f_0(z) - 1| < K$ in |z| < R (K > 0). Furthermore, let $\mathcal{F}_n(K)$ be the family of functions f_n determined by (2) from the functions $f_0 \in \mathcal{F}_0(K)$. We know that for $q \ge 1$

$$|a_q| \le K/R^q.$$

For $n \ge 0$ the existence of $D_n(K) = \sup_{f_n \in \mathcal{F}_n(K)} |f'_n(0)|$ is assured by (6),

and (6) and (7) give

(8)
$$\overline{\lim_{K \to 0} \frac{D_n(K)}{K}} \leq \frac{1}{R^{n+1}}.$$

From (2) we get

(9)
$$f_{n+1}(z) - 1 = -\frac{(f_n(z) - 1)/z - f_n'(0)}{1 + (f_n(z) - 1)/z - f_n'(0)}$$

(which in general is meromorphic in |z| < R).

Let $m \ge 1$ be an integer such that $1 < \sqrt[m]{m+1} < \gamma < R$. Using (9) we see that there exists a constant $H_1 > 0$ such that if $0 < K < H_1$ and $0 \le n \le m$, the functions in $\mathcal{F}_n(K)$ are analytic in |z| < R and

(10)
$$F_n(K) = \sup_{|z| < R; f_n \in \mathcal{F}_n(K)} |f_n(z) - 1|$$

exists. (9) and (8) then give $(0 \le n \le m)$

(11)
$$\overline{\lim_{K \to 0} \frac{F_n(K)}{K}} \leq \frac{n+1}{R^n}$$

Thus, if $\theta \in \langle (m+1)/R^m, 1 \rangle$ there exists an $H_2 \in \langle 0, H_1 \rangle$ such that $0 \le K \le H_2$ and $f_m \in \mathcal{F}_m(K)$ implies

$$(12) |f_m(z) - 1| < \theta K$$

in ||z| < R. Because of (12) and (2) we have $\mathcal{F}_{pm+q}(K) \subseteq \mathcal{F}_q(K)$ for $p \ge 0$, $0 \le q \le m-1$ and $0 < K \le H_2$. Thus the functions in $\mathcal{F}_n(K)$ are analytic in ||z| < R for $n \ge 0$ ($0 < K \le H_2$).

Further, according to (12), we have $\mathcal{F}_{pm+q}(K) \subseteq \mathcal{F}_q(\theta^p K)$ for $0 < K \leq H_2$, $p \geq 0$ and $0 \leq q \leq m-1$. Therefore the inequality

(13)
$$F_{q}(\theta^{p}K) \geq \sup_{|z| < R; f_{n} \in \mathfrak{F}_{n}(K)} |f_{n}(z) - 1|$$

holds for $0 \le K \le H_2$, n = pm + q, $p \ge 0$ and $0 \le q \le m - 1$. Because of (10) and (11) the existence of the positive number

$$M = \underset{0 \le q \le m-1}{\operatorname{Max}} \underset{0 < K \le H_2}{\operatorname{Sup}} \frac{F_q(K)}{K}$$

is assured (observe that $F_q(K_1) \le F_q(K_2)$ for $0 < K_1 \le K_2$). Therefore $F_q(K)$

340

 $\leq M \cdot K$ for $0 \leq K \leq H_2$ and $0 \leq q \leq m-1$. Thus (for n = pm + q, $p \geq 0$ and $0 \leq q \leq q \leq m-1$). m - 1)

$$F_{q}(\theta^{p}H_{2}) \leq M \cdot H_{2} \cdot \theta^{p} \leq MH_{2}/\theta \cdot \theta^{n/m} = C \cdot \theta^{n/m}.$$

(13) now gives for n = pm + q, $p \ge 0$ and $0 \le q \le m - 1$

$$\sup_{|z| \leq R; f_n \in \mathfrak{F}_n(H_2)} |f_n(z) - 1| \leq C \cdot \theta^{n/m}$$

As a result we see that if f_0 is analytic in |z| < R, $f_0(0) = 1$, $|f_0(z) - 1| < R$ H_2 and $\{f_n\}_{n\geq 0}$ is determined recursively by (2) from f_0 , then $|f_n(z) - 1| \leq 1$ $C \cdot \theta^{n/m}$ in |z| < R. Choosing $\theta = (\gamma/R)^m$ we see that (4) is proved (with $C_R(\gamma) = C$ and $K_R(\gamma) = H_{\gamma}$).

Application to the modified T-fraction expansion. Using (4) and following H. Waadeland [5, pp. 6-10], we are able to conclude the result:

Theorem 2. Let R > 1 and 0 < r < R. Then there exists a $K_r > 0$ such that if f_0 is analytic in |z| < R, $f_0(0) = 1$ and $|f_0(z) - 1| < K_r$ in |z| < R, then the modified T-fraction expansion converges to \int_0^{∞} uniformly in $|z| \leq 1$ < r < R.

Proof. The difference between $f_0(z)$ and the (n-1)th modified approximant may be written

$$f_0(z) - \frac{A_{n-1}(z) + zA_{n-2}(z)}{B_{n-1}(z) + zB_{n-2}(z)} = \frac{(-1)^{n-1}z^n(1-f(z))}{H_n(z)(H_n(z) + (1-f_n(z))B_{n-1}(z))}$$

where $H_n(z) = \prod_{k=1}^n f_k(z)$. From (4) and (2) we conclude that the infinite product $\prod_{k=1}^{\infty} f_k(z)$ converges uniformly on |z| < R and $\prod_{k=1}^{\infty} f_k(z) \neq 0$ on |z| < R.

Let $0 \le r \le R$ and choose γ such that $r \le R/\gamma \le R$ and $1 \le \gamma \le R$. Denote $K_r = K_R(\gamma)$ ($K_R(\gamma)$ in Theorem 1). We then have from (4)

$$|z^n(1-f_n(z))| \le C_R(\gamma)(r\gamma/R)^r$$

for $|z| \leq r$.

Further we use

$$B_{n}(z) - 1 = -z(B_{n-1}(z) - 1) + z \sum_{k=1}^{n} (1 + d_{k})(B_{k-1}(z) - 1) - z + z \sum_{k=1}^{n} (1 + d_{k}).$$

341

This gives for $|z| \leq r$ (using (4))

$$|B_{n}(z) - 1| \leq r|B_{n-1}(z) - 1| + r + r \sum_{k=1}^{n} |1 + d_{k}|$$

+ $r \sum_{k=1}^{n} |1 + d_{k}| \cdot |B_{k-1}(z) - 1|$
 $\leq r|B_{n-1}(z) - 1| + r + \frac{r\gamma C_{R}(\gamma)}{R(R-\gamma)} + \frac{rC_{R}(\gamma)}{R} \sum_{k=1}^{n} \left(\frac{\gamma}{R}\right)^{k} |B_{k-1}(z) - 1|.$

Let $\alpha > 1$ be a number such that $r < \alpha < R/\gamma$. Next we choose n and a constant $G \ge 1$ such that $(1 + 2\gamma C_R(\gamma)/R(R - \alpha\gamma))(1/\alpha^n) \le 1/r - 1/\alpha$ and $|B_k(z) - 1| \le G\alpha^k$ for $0 \le k \le n - 1$. We are now able to conclude that

$$|B_{n}(z) - 1| \leq rG\alpha^{n-1} + r + \frac{r\gamma C_{R}(\gamma)}{R(R-\gamma)} + \frac{r\gamma C_{R}(\gamma)G}{R(R-\alpha\gamma)}$$
$$\leq Gr\left(\alpha^{n-1} + 1 + \frac{2\gamma C_{R}(\gamma)}{R(R-\alpha\gamma)}\right) \leq Gr\left(\alpha^{n-1} + \alpha^{n}\left(\frac{1}{r} - \frac{1}{\alpha}\right)\right) = G\alpha^{n}.$$

By induction we can now easily prove that $|B_k(z) - 1| \le G\alpha^k$ for all $k \ge 0$. Thus we have for $|z| \le r$

$$|(1-f_n(z))B_{n-1}(z)| \leq C_R(\gamma)(\gamma/R)^n(1+G\alpha^{n-1}) \leq 2GC_R(\gamma)(\alpha\gamma/R)^n.$$

From the results obtained we are now able to conclude that

$$\lim_{n \to \infty} \frac{A_{n-1}(z) + zA_{n-2}(z)}{B_{n-1}(z) + zB_{n-2}(z)} = f_0(z)$$

uniformly on $|z| \leq r$ and the theorem is proved.

We will now apply Theorem 2 to

Theorem 3. Let R > 1. Let $K_R > 0$ be a number such that f_0 analytic in |z| < R, $f_0(0) = 1$ and $|f_0(z) - 1| < K_R$ in |z| < R imply that $\lim_{n \to \infty} f_n(z) = 1$ uniformly in |z| < R. Then the modified T-fraction expansion converges locally uniformly to f_0 in |z| < R.

Proof. Let 0 < r < R. From Theorem 2 we pick out the number K_r . Now we choose *m* such that $|f_m(z) - 1| < K_r$ for |z| < R. From Theorem 2 we know that the modified *T*-fraction expansion of f_m converges uniformly to f_m on $|z| \le r$. Because of the recursive properties of $\{f_n\}_{n\ge 0}$ and the sequence of modified T-fractions we obtain our theorem.

It is clear that the existence of a K_R in Theorem 3 is assured by Theorem 1. To present explicitly a K_R which works requires of course some direct calculation. As an example we will give a K_R for the case R > 2 based upon the proof of Theorem 3.1 in [4].

Example. Let R > 2. Then all numbers in (0, R/2 - 1) can be used as a K_R in Theorem 3.

Proof. If $0 < K_R < R/2 - 1$, then $0 < 2/(R - 2K_R) < 1$, and it follows easily from (2) that for $n \ge 0$

$$|f_n(z) - 1| < (2/(R - 2K_R))^n K_R$$

in |z| < R.

The author wishes to express his thanks to W. Thron and H. Waadeland for useful criticism related to the part of the paper containing the application to the modified *T*-fraction expansion. Also, the referee is thanked for reading the manuscript and all his valuable suggestions.

REFERENCES

1. W. J. Thron, Some properties of continued fractions $1 + d_0 z + K(z/(1 + d_n z))$, Bull. Amer. Math. Soc. 54 (1948), 206-218. MR 9, 508.

2. W. B. Jones, Contributions to the theory of Thron continued fractions, Ph.D. Thesis, Vanderbilt University, Nashville, Tenn., 1963.

3. W. B. Jones and W. J. Thron, Further properties of T-fractions, Math. Ann. 166 (1966), 106-118. MR 34 #319.

4. H. Waadeland, On T-fractions of functions, holomorphic and bounded in a circular disc, Norske Vid. Selsk. Skr. (Trondheim) No. 8 (1964), 19 pp. MR 31 #1364.

5. _____, A convergence property of certain T-fraction expansions, Norske Vid. Selsk. Skr. (Trondheim) No. 9 (1966), 22 pp. MR 37 #1568.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TRONDHEIM, TRONDHEIM, NORWAY