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ON THE GROWTH OF SOLUTIONS IN THE OSCILLATORY CASE

ROBERT M. KAUFFMAN

ABSTRACT.  Suppose that  A  is a bounded continuously differentiate

function   from  1.0, °o)  to the real   n X n Hermitian matrices such that, for

every ( > 0  and every  A > 0,  there is an  a (depending on  ( and A)  such

that D    — A — iE  and D   + A /A— eE  are disconjugate on  [a, °°),  where

E is the  n X n  identity matrix.   It follows from the result of this paper that

no solution   of (D    + A)f = 0  can either grow or decay exponentially.

A simplified  version of the result of this paper is as follows:     Suppose

A is a continuously differentiable, bounded function from  [0, <x>) to the posi-

tive semidefinite Hermitian complex matrices. Suppose  A (t) converges to

the zero matrix as   t approaches infinity.  Then no solution of the equation

(D    + A)f = 0  either grows or decays exponentially, where   D = d/dt.  The

complete version is somewhat more general, in that the conditions that  A(t)

be positive semidefinite for every t and that A (t) converge to zero as  t

approaches infinity are weakened somewhat.  A corollary of this result is that,

when it applies, the essential spectrum of any operator in  L2[0, °o) associ-

ated with D   + A contains (-°°, 0]. Both the result and its corollary appear to be

new even in the scalar case. They are perhaps of interest in view of the well-

known example (see Bellman [l, p. 113]) which shows that even under much

stronger hypotheses, it need not be true that all solutions are bounded, even

in the scalar case.

It should perhaps be remarked that proving the result in the general case,

rather than just the scalar case, is worthwhile because it permits a much

wider range of possible applications to mechanics.

Notation. A function / from [a, °°) into complex n dimensional space

C" is said to be in CQ (a, °°) if it is infinitely differentiable and supported

in a compact subset of (a, °°).

Notation.   L"[0, °o) denotes the space of measurable functions   / from
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[0, t») into complex  n dimensional space   C"  such that (/, /) is in  E^O, <*>),

where  ( , ) denotes the dot product in   C".   L^[0, «>) is clearly a Hilbert

space, with inner product denoted by ( , ).

Notation.  Throughout the paper, let  S denote the set of all  / in

E"[0, °o) such that  Df is absolutely continuous and   D2f is in E^[0, oo),

where  D = d/dt. It is well known that, for f£ S,   Df £ L*[0, oo).

Definition.  Let  L = D   + XD + B, where A is a real number, and  B be

a bounded continuous function from  10, °°) to the  n x n complex Hermitian

matrices. Let  LM denote the restriction of L to S.   LM  is called the maxi-

mal operator associated with  L.

Notation.   Let   L be as in the previous definition.  Then   L    denotes the

expression  D   - XD + B.

Notation.   Let  SQ denote the set of all  f in  S such that  /(o) = Df(0) = 0.

Definition.  Let  L be as in the above definitions.  Let  LQ denote the

restriction of   L to  SQ.   LQ is called the minimal operator associated with  L.

Theorem 1. Suppose that L = D + XD + B, where X is real and B is

a continuous, bounded function from [0, oo) to the complex n xra Hermitian

matrices. Then (LQ)   =(L )M.

Notation.   Let  LR denote the restriction of  L to  C£(0, oo).

Theorem 2.   Let L be as in Theorem 1.   Then LQ  is the closure of LR.

Remark.   Both of the preceding theorems are well known in the scalar

case, and seem to be fairly well known in the present context, even though

the proofs do not seem to have appeared in print except in the scalar case.

The general case can be proved fairly easily by using the scalar case, or

alternatively by imitating the methods of Dunford and Schwartz [3] in the

scalar case.

Theorem 3.   Suppose that range L„  is closed, where  L  is as in

Theorems 1 and 2.   Then nullity   LM + nullity  (L  )M = 2n.

Proof.  Clearly   LM  is a 2« dimensional extension of  LQ,  so range L,,

is closed.  It follows from Goldberg [4, Theorem IV. 1.2, p. 95] that

range  (L )Q and range  (L )M ate both closed.  The index of a closed

operator is defined to be its nullity minus the deficiency of its range. (See

Goldberg [4, §IV.2] for a discussion of the index.) It follows that index LM =

index LQ + 2«,  since a one dimensional extension raises the index by  1.

But the index of (LQ)    is — index  LQ. Also, since  LQ has no nontrivial
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null space,  (L )M  is surjective.  Thus index  LQ =-nullity ( L+)      Further-

more, index LM = nullity  LM.  The conclusion follows.

Definition. A Fredholm operator is a closed linear operator with closed

range, finite nullity, and finite deficiency. The index of a Fredholm operator

is its nullity minus the deficiency of its range.

Theorem 4.   Suppose  T  is a Fredholm operator.   Suppose that domain  B

contains domain   T,   where  B  is a closed linear operator.   Then   there is a

8 > 0 such that, if \X\ + \a\ < 8, index T + XB + ai = index T, where I is

the identity operator.

Theorem 4 is a special case of [4, Theorem V.3.6, p. 122] since, by

Theorem V.3.3,   B is   T bounded.

Notation.  Throughout this paper,  / denotes the identity operator in

L"lO, oo) and  E denotes the  n x n identity matrix.

Definition.   Let  A be a continuous function from [0, oo) to the complex

N x N Hermitian matrices.   D   + A is said to be nonpositive on  la, oo) if

((D2 + A)f, /) < 0 for all  / which are in  C~

Remark.  If A (t) is a real Hermitian matrix for each  /,  nonpositivity is

equivalent to disconjugacy, as is shown in Coppel 13, Theorem 14, p. 61J

plus a simple density argument to pass from  C°^(a, b) to the absolutely con-

tinuous  / vanishing at the end points of   [a,  b].   The oscillation theory of

second order selfadjoint systems, and even more general systems, is dis-

cussed in detail in Chapter 2 of Coppel.  Our main result can be thought of,

loosely, as relating the growth of solutions of  \D    + A)f = 0 to the oscilla-

tion theory of (D2 + A)f = 0   and   (D2 + A')f = 0.

Definition.  Let  B be a continuous function from  [0, oo) to the n x n

complex Hermitian matrices.  B is said to have property P if there is some

real number A < 1  such that, for every « > 0, there is a  b (which depends

upon  e) such that both   D2 + B - eE and  D    + B/X - eE ate nonpositive on

Remark.  If  B(t) converges to zero as   / approaches infinity, then  B

has property P.

We now come to our main result.

Theorem 5.   Suppose that A  is a continuously differentiable bounded

function from [0, oo)  to the complex n x n Hermitian matrices.   Suppose the

set of real numbers X such that A'/X has property P contains (-oo, 0) or

(0, oo).  Suppose further that, for every e > 0,   there is a positive number a
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(which depends upon e) such that D2 - A - eE is nonpositive on [a, °o).

Then, for every A > 0,   and for every solution f of the equation (D2 + A)f = 0,

e~ tf(t)  converges to zero as  t approaches infinity,   and e~Xtf(t) converges

to zero as t approaches infinity, but eXlf(t)  is not in L  [0, oo).

Proof. We need several lemmas.

Lemma 1.   Suppose that B  has property  P.   Suppose f    is a sequence of

functions in  C™(n, °°)  with  ||/ || = 1,   and such that, for every e > 0,

((D   + B)fn, f )  becomes greater than —e as n becomes large.   Then

((D   + B)fn, f ) converges to zero, and also  \\Df \\   converges to zero.

Proof.  First, it is clear that ((D   + B)fn, f ) converges to zero, since,

for each  e > 0, we have   ((£>   + B - e^)/n, / ) becoming eventually less than

zero as  n becomes large, since  B has property P. Suppose that (Df , Df)

does not converge to zero.  Then \Bf , / ) is eventually > 8, for some

8 > 0,  since  ((£>   + B)f , f ) converges to zero. Now

((D2 + B/X)fn, fn) = ((D2 + B)fn, fn) + (1A- D(B/„, /„),

and thus ((D2 + B/X)fn, /J is eventually > ((l/A)5 - 8)/2. This contradicts

property P.

Lemma 2.   Suppose that B  is a continuously differentiable function from

[0, oo)  to the Hermitian complex matrices such that either B /X or -B /X

has property P.  Suppose also that, for some e > 0,  there is an a such that

D2 - B + eE is nonpositive on [a, °o).  Then {D   + XD + B)Q has closed

range.

Proof. Let  Q = D2 + XD + B. Then

Q + Q = (D2 + B)2 - A2D2 - AS' = (D2 + B)2 - X2(D2 + B '/X).

Suppose that  B'/X has property P. Suppose also that range Q0 is not

closed.  Then there is a sequence  fn  in   C™(n, oo) with   ||/J| = 1   and   ||2/J|

converging to zero.  (The fact that the  /    can be chosen with compact

support in  in, oo) follows from the fact that if, on any interval  In, oo),  RQ

had closed range, where   R is the restriction of Q to  [n, oo), then  QQ

would have closed range.)

Since (Q+Qf , f ) converges to zero, and since ((D + ß) fn, fn> > 0,

it follows from our formula for Q+Q that, for any e > 0, ((D + B'/X)fn, fj

eventually becomes larger than -i.  By Lemma 1, both  (D fn, fj  and
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((D2 + B'/ X)f > / ) converge to zero.  Once again using the formula for

Q+Q, we see that   ||(D2 + B)fJ\  converges to zero.   But then  (B/n, fj also

converges to zero.  Thus, for any  e > 0,  ((D2 - B + eE)fn, ¡) is eventually

positive, which contradicts the hypotheses of the lemma.  Thus range   Q0 is

closed, and Lemma 2 is proved, provided that  B /A has property P.  If

-B'/X has property P, we use what we have proved to show that range (Q )Q

is closed, since  Q   = D2 - XD + B.  But, if range  (Q )Q is closed, then

range  (Q )M  is closed, since a finite dimensional extension of a closed

subspace is closed.  Then, since it is well known (see [4, IV.1.8, p. 98J)

that the adjoint of a closed operator with closed range also has closed

range, it follows from the fact that {(Q  )M)    = ((Q0)*)* = Q0 that range   QQ

is closed.

Proof of Theorem 5.  For any nonzero real number A, define the expres-

sion  Qx by  Qxfit) = e~XtL(eXtf(t)), where  L denotes  D2 + A. When expanded,

Qx= D2 + 2XD + A + X2E.  Let e = X2/2.  By hypothesis,   D2 - A - eE is

nonpositive on some interval (a, oo). If B = A + A E, then  D   - A — eE =

D   - B + eE, so B satisfies the hypotheses of Lemma 2.

Therefore,  range (Q^0 is closed for any  A / 0,  and thus each  (Q)}M  is

surjective (since its adjoint,   «Ô») )0,  has no nontrivial null space).  Each

^Qx\   1S a Fredholm operator, with domain S (see notation at the beginning

of the paper).  It follows from Theorem 4 that index  (Q))M  is constant for

every A > 0,  and also for every  A < 0,  though these two constants need not

be the same.  But index (QX)M is the dimension of the  E"[0, oo) solution

space of the equation   Q g = 0.   Also,  if  Qxg = 0,  then  g (t) = e~Xtf(t), where

(D   + A)f = 0.  If A is large enough, then any such g is in L"[0, oo), since

A is bounded. Thus, for all A > 0, nullity (QX)M = 2n. Therefore, by

Theorem 3, for A< 0 it follows that nullity  (QX)M = °>  since  (öA) + = Q_y

We have shown that for any solution  / of the equation  (D2 + A)f = 0,

e~Xtf(t) is in Ln[0, ~), but  eXtf(t) is not in  L^[0, oo). To complete the

proof, we need only to show that, as   t approaches infinity,   e~Xtf(t) con-

verges to zero. /

We have shown that  e~Xtf(Ù£ S.  Therefore   D(e~Xtf(t)) is in  L^[0, oo).

However, if  h is any complex valued, absolutely continuous function, and

h and  h' are both in  L2[a, oo), h(a) = 8,  \\h'\\ = M, it follows that  h(x) > 8/2

for all x£ [a, a + 8/2M], so that   \\h\\ > S2/4M.  If h is in  E2[0, oo), it

follows that, as  a gets large,   h(a) converges to zero.  This shows that

e     'f(t) converges to zero as   t approaches infinity.   But since   D(e~Xtf(t)) =

-Xe-Xtf(t)+ e-Xtf'(t), and since
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D2(e~Xtf(t)) = -2Xe-Xtf'(t) + e-Xif"(t) + X2e~Xtf(t)

= -2Xe-Xtf'(t) + e-XtA(i)f(t) + X2e~Xlf(t),

we see that  e~Xtf'(t) is in  L^[0,  oo), because  D(e~Xtf(t)) is, and therefore

D2(e~Xtf(t)) is in  L^tO, oo), So that  D(e~Xtf(t)) converges to zero as  t

approaches infinity, and thus   e~   f (t) converges to zero as   / approaches

infinity. Theorem 5 is proved.

Corollary.   Let A  be as in Theorem 5.   Let H  be any selfadjoint exten-

sion of (D    + A)Q.   Then the essential spectrum of H  contains the interval

(-oo,0].

Proof.  If the range of (D   + A)„ were closed, Theorem 4 would imply

that nullity  (Q^ would be constant in a neighborhood of A = 0.  But this

would imply that, for small  A,  nullity (Q_X>M = nullity (QX>M,  or in other

words that  0 = 2«.

Therefore, for any  A satisfying the hypotheses of Theorem 5,

range (D   + A)M  is not closed.  But, if A satisfies the hypotheses of

Theorem 5, then so does  A + AE for any   A > 0.   Furthermore,  since

(D   + A + XE)M  is a finite dimensional extension of  H + XI, if the range

of H + XI were closed, then range (D   + A + XE)M would be closed. Since

the essential spectrum of H is the set of all  A such that  H - XI does not

have closed range, the conclusion follows.
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