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HEREDITARILY CLOSURE-PRESERVING

COLLECTIONS AND METRIZATION

D. BURKE, R. ENGELKING AND D. LUTZER1

ABSTRACT.   In this paper we present a generalization of the

Nagata-Smitnov mettization theorem.  We prove that a regular T,-space

is mettizable if and only if it has a base of open sets which is the union

of countably many hereditarily closure-preserving subcollections.  In addi-

tion, we investigate intersections of hereditarily closure-preserving col-

lections of open sets.r

A collection K.  of subsets of a space X  is closure-preserving  if

cl(U£) = Ulcl(L)| L £ £i for any subcollection £ of K.  A collection K

of subsets of X  is hereditarily closure-preserving (HCP) if, whenever a sub-

set  K(H) C H  is chosen for each  H £ K, the resulting collection K = {K(H)\

H £i\]  is closure-preserving.  Clearly, every locally finite collection is he-

reditarily closure-preserving.   Examples show that closure preserving collec-

tions may fail to be HCP   and that HCP   collections may fail to be locally

finite.  A o-HCP collection is one which can be written as a countable union

of HCP  subcollections.

The classical Nagata-Smirnov metrization theorem [4], [5] asserts that

a regular space    is metrizable if and only if it has a rj-locally finite base.

Regular spaces which have a cr-closure-preserving base were introduced by

J. Ceder [l].  Ceder called these spaces  "M. -spaces" and gave examples

which show that M  -spaces need not be first-countable and that even when

they are first-countable they need not be metrizable.

In this paper we consider regular spaces which have a cr-HCP base.

Such spaces appear to lie between metrizable spaces and M. -spaces.  We

will show that they coincide with metrizable spaces.

Lemma 1.   Let X  be a T. -space and suppose p £ X has a neighborhood
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base .0 of cardinality m.   Let K  be an HCP collection of subsets of X and

suppose that no member of K  contains p.  Then some neighborhood of p

meets fewer than m  members of K.

Proof.   Let Y be the first ordinal with cardinality m.  Well order ,D  as

J) = iß(a)|a < TI and suppose each member of m meets at least m  members

of K.  Inductively choose members H(a) £ K  for 1 < a < Y such that

(a) if a 4 a'  then /7(a) 4 H(a '),

(b) //(a) r\B(a)40.

For each a <T choose a point q(a) £ H(a) CiB(a);  it is not required that

q(a)'s be distinct.  Let  K(a) = {q(a)\.  Since K   is hereditarily closure pre-

serving the set  K = Ui^(a)la < E]  must be closed, and  K does not contain

p.  Yet each member of jj meets  K, so  K  cannot be closed unless it does

contain p.

Corollary 2.   Let p  be a point of a T  -space X.  Suppose p has a neigh-

borhood base Jj  whose cardinality is m.   If K   is any HCP collection such

that for each  H £ K, p  is not an isolated point of H, then some neighborhood

of p meets fewer than m  members of K.

Proof.   Let H' = {//\!pi|/7 6 Hi.  Lemma 1 yields a neighborhood B   of

p  meeting fewer than m  members of K   .  Since, for a set H £ K, ß n (H\{p\)

4 0 if and only if B Ci H 4 0, we see that  B  meets fewer than m  members

of K.

Corollary 3.   Let p  be a nonisolated point of a T. -space X and let K

be an HCP collection of open subsets of X.  If p has a countable neighbor-

hood base, then K  is locally finite at p.

Lemma 4.  Suppose p  is a limit point   of a set A  in a space X and

that there is a G5 -subset G of X which contains p and has G C\ (A\{pi) =

0.  Then any HCP collection of neighborhoods of p must be finite.

Proof.   Write G = ílÍG(72)|rz > 1Î where each G(ri) is an open subset of

X.  Suppose C  is an infinite HCP collection of neighborhoods of p.  Let

C(l), C(2), ...   be distinct members of C  Define D(l) = A n C(l) n G(l) and

D(n) = D(n - I) n C(n) CiG(n) whenever n > 2.  Because C(l) oG(l) is a

neighborhood of p, p  is a limit point of D(l)\!pi.  However p  is not a limit

_

3  I.e.,p e cl(Aipl).
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point of any set D(n)\D(n + I) so that because the  C(t2)'s are distinct mem-

bers  of an   HCP   collection,   p   cannot  be  a  limit point of the  set

\J\D(n)\D(n + 1)|« > l! = D,\{p\.   That contradiction establishes the lemma.

Theorem 5.  A regular space X  is metrizable if and only if X has a

o-HCP base of open sets.

Proof.  That every metrizable space has such a base follows directly

from the Nagata-Smirnov theorem.

To prove the converse assertion, let ÍB = Ui®(n)|?2 > 1} be a cr-HCP base

for X.   Let p  be a nonisolated point of X.   Then  {p] is a G ¡.-subset of X.

For each fixed 272  the collection  {B £ %(m)\p £ B\ is finite, in light of Lem-

ma 4, so that .p belongs to only countably many members of ,».  Thus X  is

first-countable at p.

Since X  is first-countable, it follows from Corollary 3 that each set

X(«) = {x £ X\3(n) is locally finite at x] contains all nonisolated points of

X.  Also, each X(n) is an open set.  Let $'(«) = iß nX(r2)|ß £ %(n)\.  Then

each collection m (n) is locally finite at all points of X  and the collection

£>   - \j{m (n)\n > 1|  contains a neighborhood base at each nonisolated point

of X.

Let ÍB"(rz) = iUS|SxS £ ÍB(t2)S. Each x>"(n) is a discrete collection in X

so that the collection \J{£> (n) U ,Jj (t2)|t2 > 1] is a a-locally finite base for

X. According to the Nagata-Smirnov theorem, X is metrizable.

A more subtle application of Lemma 4 yields a result on o-HCP local

bases at a point.

Theorem 6. Suppose p is a nonisolated point of a T.-space X and sup-

pose \J{%(n)\n > IS is a o-HCP base of neighborhoods of p. Then each ,a(n)

is finite and X is first countable at p.

Proof.   For each ß £ $(22) choose a point y(B) £ ß\!pi.  Since $(«) is

HCP, the set  F(n) = iy(ß)|ß £ $(72)!  is a closed set.  Furthermore p  is a

limit point of the set F = [J{F(n)\n > 11.  Let G = X\F.  Then G is a Gg

subset of X, p £ G, and G 0(F\!pS) = 0.  According to Lemma 4, each col-

lection ,D(n) must be finite.

In an attempt to simplify the proofs of Theorems 5 and 6—by eliminating

the need for the technical Lemma 4—the authors were led to the conjecture

that if K  is an open HCP collection in a space X, then I IK is open in X.

Unfortunately, as Example 8 will show, the conjecture is false; however we

can prove
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Proposition 7.  // K  is an open HCP collection in a Hausdorff k-space

[3]  X, then OK  is open.4

Proof.  One shows that for each (countably) compact set  K Ç X, the

collection  {H Ci K\H £ ri\ contains only finitely many distinct subsets of K.

Hence K Ci (flH) = ]\{H O K\H £ Hi is the intersection of finitely many rel-

atively open subsets of  K, so  KO(f |H) is relatively open in  K fot each

compact subset K of X.   Since X  is a ¿-space, I IK  is open in X.

Example 8.   There is an open HCP collection H  in a hereditarily para-

Xi    1       C*\ 1/
such that I  In   is not open.

To construct X  we need a definition and a technical lemma.  Let us

say that a function /:  [O, cúA —> J ([0, ojj[)  , where o>j   is the first un-

countable ordinal, is admissible if for each a < <y     f(a) is a countable

1 r   i r
subset of Ja, cúA.

Lemma.   Let    f:  [O, o>j[   —»   9(l0, ûJj[)    be admissible.    Then

ll, (úl\\\J\f(a):  0 < a < cú1\ is uncountable.

Proof.   If [l, &>,[\ Ul/(a):  0 < a < cú.\ were countable we could obtain

an admissible function g  such that  Ulg(a)|0 < a <cu1i = [l*, eUj[.  Defining

<p(0) = 0  and (piß) = inf la: ß £ g(a)\ if 1 < ß < cuy, we obtain a function

rp:  [0, o>1[ —» [0, rDj[  such that (piß) < ß  if 0 < /3 < «j   and such that

tp-1(a) is countable for each a <co..  But according to a theorem of Alex-

androff and Urysohn [2, p. 79], no such function can exist.

It is clear that if / and g  ate admissible then so is h, defined by

¿(a) = /(a) Ug(a) for each a < cú..  For each admissible /, let N. -

[LwjjXUl/ia-): 0<a<o)1! and let ft = {Nf: f is admissible!.  Then ft

is closed under finite intersections so that we may topologize the set X =

[0, Cd,]  by taking ft  to be a neighborhood base at a>1   and by making each

other point isolated.  With that topology  X  is a hereditarily paracompact

Hausdorff space.

_

4   One can also prove that if K is án open  HCP  collection in a locally con-

nected régulât space then   |  |K is open, the key lemma being that in any 7\-space

the intersection of an open, countable, HCP collection is open.  Given that lemma,

suppose  x e f IX where M   is an open HCP collection in X.  If K were infinite we

could choose distinct members  Hn   of H and (using regularity and local connected-

ness of X) connected open sets  U   c H     in such a way that  x £ U     and  cl(/7     ,)

S U„ n H     -   for each 71.   But then the set \\{U   : n > 1 j would be a nonempty,

closed-and-open subset of X which is ptoperly contained in the connected set U  .

That being impossible, M is finite and our assertion is established.

' ?([0, a>,l) denotes the powet set of [O, <*>,[.
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For each  a < gj      let Ha = ]a, cOj]  and let H = {Ha:  0 < a < cú^.  Then

H is a collection of open sets in X  and I IH = {a> A is not open.   To complete

the example, we show that H   is HCP.   Suppose that S   C H     fot each  a <

cj.; it will be enough to show that if cú.  4 cKSa)  f°r each  a, then cú,   4

cl(Ul^a: a <&),!).  Because cú.  4 cl(Sa)  there is an admissible function fa

having Sa C \J{fa(ß):  0 < ß < cú. i.   By modifying fa if necessary, we may

assume that fa(ß) = 0 whenever ß < a.  Defining g(ß) = Ul/a(/3):  0 < a <

/Si  for /3 <&>., we obtain an admissible function having  Ul^a:  0 < a <rjjji

Ç Ulgiß):  0 <ß <cú1\ so that Wj  ^ cl(U{Sa:  0 < a < tUji)  as required.

The referee has suggested a possible improvement in our metrization

theorem.  Suppose that one considers collections H   in a space X  with the

property that if a point x(H) £ H  is chosen for each H   £ H  then the set

{x(H):  H e n\   is a closed discrete subspace of X;   such collections might

reasonably be called weakly HCP.   Then is it true that a regular space is

metrizable if it has a a-weakly HCP base?   The question has an affirmative

answer provided only ¿-spaces are considered:  the proof of Proposition 7

shows that a ¿-space having a cr-weakly HCP base must be first countable

so that the proof of Theorem 5, beginning with the third paragraph, shows

that X (if regular) is metrizable.  However, our next example shows that if

X  is not assumed to be a ¿-space, then the suggested generalization of The-

orem 5 is false.

Example 9.  There is a nonmetrizable, hereditarily paracompact space

which has a a-weakly HCP base.

Proof. Let   A   be the set of all ordinals having cardinality less than

K^j .  Let Z be the product space lO, 1Î     and let   0   be the element of Z

having 0 (a) = 0 for each a £ A. Let X be the set lOi U {z £ Z:  the set

ja £ A:  z(a) = OS is finitei.  Topologize X by making each point of X\ [05

isolated and by taking basic neighborhoods of 0 to be all sets of the form

U C\X where U is a basic neighborhood of 0 in the product space Z.  Then

X  is hereditarily paracompact and nonmetrizable.

Let $'(72)= llzi:  z £ x\{0~\ and  |{a £ A:  z(a) = 0i| =22!.  Then each

§> in)  is a discrete collection in X.   For each basic open neighborhood U

of 0 in Z the set R(U) = la e A:  nJU] = Sou is finite, where 77a:  Z ->

lO, lia denotes the projection.  Let %"(n) = JÍ7 O X:  Í7  is a basic neighbor-

hood of 0 in Z and R(U) C [O, a> [S, where co    is the first ordinal of cardi-

nality   X  . Since each set U O X in %"(n) is uniquely determined by the fi-

nite set R(U) of [0, cú I, \s>"(n)\ <  X .  In order to show that $"(22) is weak-



488 D. BURKE, R. ENGELKING AND D. LUTZER

ly HCP it will be sufficient to show that if a point Zy  £ (U nX)\lOi  is

chosen for each  U O X £ $"(«), then  0~ 4 clisas   U O X € SB"(«)U   For each

of the chosen points Zy, the set S(U) = la e A:  Zy(a) = 0\ is finite.  Since

ß"i")\ < Xn  the set S = \J\S(U):   U O X e 58" (72)! has cardinality not exceed-

ing  K     so that we may choose ß £ A\S.   But then the neighborhood X n

lz e Z:  z(/3) = Oi of 0 contains no point z^   so that 0 4 cljz.,:  U Ci X £

Jj (72)i, as required.

Since the collection  \J{m (n) uJ)  (22):  22 > 1S  is a base for X, the proof

is complete.
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