HEREDITARILY CLOSURE-PRESERVING COLLECTIONS AND METRIZATION

D. BURKE, R. ENGELKING AND D. LUTZER¹

ABSTRACT. In this paper we present a generalization of the Nagata-Smirnov metrization theorem. We prove that a regular T_1 -space is metrizable if and only if it has a base of open sets which is the union of countably many hereditarily closure-preserving subcollections. In addition, we investigate intersections of hereditarily closure-preserving collections of open sets.

A collection K of subsets of a space X is closure-preserving if $\operatorname{cl}(\mathbf{U}\mathfrak{L}) = \mathbf{U}\{\operatorname{cl}(L)|L\in\mathfrak{L}\}$ for any subcollection \mathfrak{L} of K. A collection K of subsets of X is hereditarily closure-preserving (HCP) if, whenever a subset $K(H) \subset H$ is chosen for each $H \in K$, the resulting collection $K = \{K(H)|H\in K\}$ is closure-preserving. Clearly, every locally finite collection is hereditarily closure-preserving. Examples show that closure preserving collections may fail to be HCP and that HCP collections may fail to be locally finite. A σ -HCP collection is one which can be written as a countable union of HCP subcollections.

The classical Nagata-Smirnov metrization theorem [4], [5] asserts that a regular space² is metrizable if and only if it has a σ -locally finite base. Regular spaces which have a σ -closure-preserving base were introduced by J. Ceder [1]. Ceder called these spaces '' M_1 -spaces' and gave examples which show that M_1 -spaces need not be first-countable and that even when they are first-countable they need not be metrizable.

In this paper we consider regular spaces which have a σ -HCP base. Such spaces appear to lie between metrizable spaces and M_1 -spaces. We will show that they coincide with metrizable spaces.

Lemma 1. Let X be a T_1 -space and suppose $p \in X$ has a neighborhood

Received by the editors August 10, 1973 and, in revised form, June 14, 1974. AMS (MOS) subject classifications (1970). Primary 54E35; Secondary 54D20. Key words and phrases. Metrizability, Nagata-Smirnov theorem, hereditarily closure-preserving collection.

¹ Partially supported by NSF Grant GP 29401.

² We adopt the convention that regular spaces must be T_1 .

base \mathcal{B} of cardinality m. Let \mathcal{H} be an HCP collection of subsets of X and suppose that no member of \mathcal{H} contains p. Then some neighborhood of p meets fewer than m members of \mathcal{H} .

Proof. Let Γ be the first ordinal with cardinality \mathfrak{m} . Well order \mathfrak{B} as $\mathfrak{B} = \{B(\alpha) | \alpha < \Gamma\}$ and suppose each member of \mathfrak{B} meets at least \mathfrak{m} members of \mathfrak{H} . Inductively choose members $H(\alpha) \in \mathfrak{H}$ for $1 < \alpha < \Gamma$ such that

- (a) if $\alpha \neq \alpha'$ then $H(\alpha) \neq H(\alpha')$,
- (b) $H(\alpha) \cap B(\alpha) \neq \emptyset$.

For each $\alpha < \Gamma$ choose a point $q(\alpha) \in H(\alpha) \cap B(\alpha)$; it is not required that $q(\alpha)$'s be distinct. Let $K(\alpha) = \{q(\alpha)\}$. Since $\mathcal H$ is hereditarily closure preserving the set $K = \bigcup \{K(\alpha) | \alpha < \Gamma\}$ must be closed, and K does not contain p. Yet each member of $\mathcal B$ meets K, so K cannot be closed unless it does contain p.

Corollary 2. Let p be a point of a T_1 -space X. Suppose p has a neighborhood base $\mathcal B$ whose cardinality is m. If $\mathcal H$ is any HCP collection such that for each $H \in \mathcal H$, p is not an isolated point of H, then some neighborhood of p meets fewer than m members of $\mathcal H$.

Proof. Let $\mathcal{H}' = \{H \setminus \{p\} | H \in \mathcal{H}\}$. Lemma 1 yields a neighborhood B of p meeting fewer than m members of \mathcal{H}' . Since, for a set $H \in \mathcal{H}$, $B \cap (H \setminus \{p\})$ $\neq \emptyset$ if and only if $B \cap H \neq \emptyset$, we see that B meets fewer than m members of \mathcal{H} .

Corollary 3. Let p be a nonisolated point of a T_1 -space X and let $\mathcal H$ be an HCP collection of open subsets of X. If p has a countable neighborhood base, then $\mathcal H$ is locally finite at p.

Lemma 4. Suppose p is a limit point³ of a set A in a space X and that there is a G_{δ} -subset G of X which contains p and has $G \cap (A \setminus \{p\}) = \emptyset$. Then any HCP collection of neighborhoods of p must be finite.

Proof. Write $G = \bigcap \{G(n) | n \ge 1\}$ where each G(n) is an open subset of X. Suppose \mathcal{C} is an infinite HCP collection of neighborhoods of p. Let C(1), C(2), ... be distinct members of \mathcal{C} . Define $D(1) = A \cap C(1) \cap G(1)$ and $D(n) = D(n-1) \cap C(n) \cap G(n)$ whenever $n \ge 2$. Because $C(1) \cap G(1)$ is a neighborhood of p, p is a limit point of $D(1) \setminus \{p\}$. However p is not a limit

³ I.e., $p \in cl(A \setminus \{p\})$.

point of any set $D(n) \setminus D(n+1)$ so that because the C(n)'s are distinct members of an HCP collection, p cannot be a limit point of the set $\bigcup \{D(n) \setminus D(n+1) | n \ge 1\} = D_1 \setminus \{p\}$. That contradiction establishes the lemma.

Theorem 5. A regular space X is metrizable if and only if X has a σ -HCP base of open sets.

Proof. That every metrizable space has such a base follows directly from the Nagata-Smirnov theorem.

To prove the converse assertion, let $\mathcal{B} = \bigcup \{\mathcal{B}(n) | n \geq 1\}$ be a σ -HCP base for X. Let p be a nonisolated point of X. Then $\{p\}$ is a G_8 -subset of X. For each fixed m the collection $\{B \in \mathcal{B}(m) | p \in B\}$ is finite, in light of Lemma 4, so that p belongs to only countably many members of \mathcal{B} . Thus X is first-countable at p.

Since X is first-countable, it follows from Corollary 3 that each set $X(n) = \{x \in X | \mathcal{B}(n) \text{ is locally finite at } x\}$ contains all nonisolated points of X. Also, each X(n) is an open set. Let $\mathcal{B}'(n) = \{B \cap X(n) | B \in \mathcal{B}(n)\}$. Then each collection $\mathcal{B}'(n)$ is locally finite at all points of X and the collection $\mathcal{B}' = \bigcup \{\mathcal{B}'(n) | n \geq 1\}$ contains a neighborhood base at each nonisolated point of X.

Let $\mathfrak{B}''(n) = \{\{x\} | \{x\} \in \mathfrak{B}(n)\}$. Each $\mathfrak{B}''(n)$ is a discrete collection in X so that the collection $\bigcup \{\mathfrak{B}'(n) \cup \mathfrak{B}''(n) | n \ge 1\}$ is a σ -locally finite base for X. According to the Nagata-Smirnov theorem, X is metrizable.

A more subtle application of Lemma 4 yields a result on $\sigma\text{-HCP}$ local bases at a point.

Theorem 6. Suppose p is a nonisolated point of a T_1 -space X and suppose $\bigcup \{\mathfrak{B}(n)|n\geq 1\}$ is a σ -HCP base of neighborhoods of p. Then each $\mathfrak{B}(n)$ is finite and X is first countable at p.

Proof. For each $B \in \mathcal{B}(n)$ choose a point $y(B) \in B \setminus \{p\}$. Since $\mathcal{B}(n)$ is HCP, the set $F(n) = \{y(B) | B \in \mathcal{B}(n)\}$ is a closed set. Furthermore p is a limit point of the set $F = \bigcup \{F(n) | n \ge 1\}$. Let $G = X \setminus F$. Then G is a G_{δ} subset of X, $p \in G$, and $G \cap (F \setminus \{p\}) = \emptyset$. According to Lemma 4, each collection $\mathcal{B}(n)$ must be finite.

In an attempt to simplify the proofs of Theorems 5 and 6-by eliminating the need for the technical Lemma 4-the authors were led to the conjecture that if $\mathcal H$ is an open HCP collection in a space X, then $\bigcap \mathcal H$ is open in X. Unfortunately, as Example 8 will show, the conjecture is false; however we can prove

Proposition 7. If \mathbb{H} is an open HCP collection in a Hausdorff k-space [3] X, then $\bigcap \mathbb{H}$ is open.⁴

Proof. One shows that for each (countably) compact set $K \subseteq X$, the collection $\{H \cap K | H \in \mathcal{H}\}$ contains only finitely many distinct subsets of K. Hence $K \cap (\bigcap \mathcal{H}) = \bigcap \{H \cap K | H \in \mathcal{H}\}$ is the intersection of finitely many relatively open subsets of K, so $K \cap (\bigcap \mathcal{H})$ is relatively open in K for each compact subset K of X. Since X is a k-space, $\bigcap \mathcal{H}$ is open in X.

Example 8. There is an open HCP collection $\mathcal H$ in a hereditarily paracompact space X such that $\bigcap \mathcal H$ is not open.

To construct X we need a definition and a technical lemma. Let us say that a function $f: [0, \omega_1[\to \mathcal{P}([0, \omega_1[)^5, \text{ where } \omega_1 \text{ is the first uncountable ordinal, is admissible if for each } \alpha < \omega_1, f(\alpha) \text{ is a countable subset of }]\alpha, \omega_1[.$

Lemma. Let $f: [0, \omega_1[\rightarrow \mathcal{P}([0, \omega_1[) \text{ be admissible. Then } [1, \omega_1[\setminus \bigcup \{f(\alpha): 0 \leq \alpha < \omega_1\} \text{ is uncountable.}]$

Proof. If $[1, \omega_1[\setminus \bigcup \{f(\alpha): 0 \le \alpha < \omega_1\}]$ were countable we could obtain an admissible function g such that $\bigcup \{g(\alpha)|0 \le \alpha < \omega_1\} = [\Gamma, \omega_1[$. Defining $\phi(0) = 0$ and $\phi(\beta) = \inf\{\alpha: \beta \in g(\alpha)\}$ if $1 \le \beta < \omega_1$, we obtain a function $\phi: [0, \omega_1[\to [0, \omega_1[$ such that $\phi(\beta) < \beta$ if $0 < \beta < \omega_1$ and such that $\phi^{-1}(\alpha)$ is countable for each $\alpha < \omega_1$. But according to a theorem of Alexandroff and Urysohn [2, p. 79], no such function can exist.

It is clear that if f and g are admissible then so is h, defined by $h(\alpha)=f(\alpha)\cup g(\alpha)$ for each $\alpha<\omega_1$. For each admissible f, let $N_f=[1,\omega_1]\setminus\bigcup\{f(\alpha)\colon 0\leq \alpha<\omega_1\}$ and let $\mathcal{H}=\{N_f\colon f\text{ is admissible}\}$. Then $\mathcal{H}=\{0,\omega_1\}$ by taking $\mathcal{H}=\{0,\omega_1\}$ to be a neighborhood base at ω_1 and by making each other point isolated. With that topology X is a hereditarily paracompact Hausdorff space.

⁴ One can also prove that if $\mathbb K$ is an open HCP collection in a locally connected regular space then $\bigcap \mathbb K$ is open, the key lemma being that in any T_1 -space the intersection of an open, countable, HCP collection is open. Given that lemma, suppose $x \in \bigcap \mathbb K$ where $\mathbb K$ is an open HCP collection in X. If $\mathbb K$ were infinite we could choose distinct members H_n of $\mathbb K$ and (using regularity and local connectedness of X) connected open sets $U_n \subseteq H_n$ in such a way that $x \in U_n$ and $\mathrm{cl}(U_{n+1}) \subseteq U_n \cap H_{n+1}$ for each n. But then the set $\bigcap \{U_n : n \geq 1\}$ would be a nonempty, closed-and-open subset of X which is properly contained in the connected set U_1 . That being impossible, $\mathbb K$ is finite and our assertion is established.

5 $\Re ([0, \omega_1])$ denotes the power set of $[0, \omega_1]$.

For each $\alpha < \omega_1$, let $H_\alpha =]\alpha$, $\omega_1]$ and let $\mathcal{H} = \{H_\alpha \colon 0 \leq \alpha < \omega_1\}$. Then \mathcal{H} is a collection of open sets in X and $\bigcap \mathcal{H} = \{\omega_1\}$ is not open. To complete the example, we show that \mathcal{H} is HCP. Suppose that $S_\alpha \subseteq H_\alpha$ for each $\alpha < \omega_1$; it will be enough to show that if $\omega_1 \notin \operatorname{cl}(S_\alpha)$ for each α , then $\omega_1 \notin \operatorname{cl}(\bigcup \{S_\alpha \colon \alpha < \omega_1\})$. Because $\omega_1 \notin \operatorname{cl}(S_\alpha)$ there is an admissible function f_α having $S_\alpha \subseteq \bigcup \{f_\alpha(\beta) \colon 0 \leq \beta < \omega_1\}$. By modifying f_α if necessary, we may assume that $f_\alpha(\beta) = \emptyset$ whenever $\beta < \alpha$. Defining $g(\beta) = \bigcup \{f_\alpha(\beta) \colon 0 \leq \alpha \leq \omega_1\}$ for $\beta < \omega_1$, we obtain an admissible function having $\bigcup \{S_\alpha \colon 0 \leq \alpha < \omega_1\}$ $\subseteq \bigcup \{g(\beta) \colon 0 \leq \beta < \omega_1\}$ so that $\omega_1 \notin \operatorname{cl}(\bigcup \{S_\alpha \colon 0 \leq \alpha < \omega_1\})$ as required.

The referee has suggested a possible improvement in our metrization theorem. Suppose that one considers collections $\mathcal H$ in a space X with the property that if a point $x(H) \in H$ is chosen for each $H \in \mathcal H$ then the set $\{x(H): H \in \mathcal H\}$ is a closed discrete subspace of X; such collections might reasonably be called weakly HCP. Then is it true that a regular space is metrizable if it has a σ -weakly HCP base? The question has an affirmative answer provided only k-spaces are considered: the proof of Proposition 7 shows that a k-space having a σ -weakly HCP base must be first countable so that the proof of Theorem 5, beginning with the third paragraph, shows that X (if regular) is metrizable. However, our next example shows that if X is not assumed to be a k-space, then the suggested generalization of Theorem 5 is false.

Example 9. There is a nonmetrizable, hereditarily paracompact space which has a σ -weakly HCP base.

Proof. Let A be the set of all ordinals having cardinality less than \mathbf{R}_{ω_0} . Let Z be the product space $\{0, 1\}^A$ and let $\overline{0}$ be the element of Z having $\overline{0}(\alpha) = 0$ for each $\alpha \in A$. Let X be the set $\{\overline{0}\} \cup \{z \in Z\}$: the set $\{\alpha \in A: z(\alpha) = 0\}$ is finite. Topologize X by making each point of $X \setminus \{\overline{0}\}$ isolated and by taking basic neighborhoods of $\overline{0}$ to be all sets of the form $U \cap X$ where U is a basic neighborhood of $\overline{0}$ in the product space Z. Then X is hereditarily paracompact and nonmetrizable.

Let $\mathfrak{B}'(n) = \{\{z\}: z \in X \setminus \{\overline{0}\} \text{ and } | \{\alpha \in A: z(\alpha) = 0\}| = n\}$. Then each $\mathfrak{B}'(n)$ is a discrete collection in X. For each basic open neighborhood U of $\overline{0}$ in Z the set $R(U) = \{\alpha \in A: \pi_{\alpha}[U] = \{0\}\}$ is finite, where $\pi_{\alpha} \colon Z \to \{0, 1\}_{\alpha}$ denotes the projection. Let $\mathfrak{B}''(n) = \{U \cap X: U \text{ is a basic neighborhood of } \overline{0} \text{ in } Z \text{ and } R(U) \subseteq [0, \omega_n[\}, \text{ where } \omega_n \text{ is the first ordinal of cardinality } \mathbb{R}_n$. Since each set $U \cap X$ in $\mathfrak{B}''(n)$ is uniquely determined by the finite set R(U) of $[0, \omega_n[, |\mathfrak{B}''(n)| \leq \mathbb{R}_n]$. In order to show that $\mathfrak{B}''(n)$ is weak-

ly HCP it will be sufficient to show that if a point $z_U \in (U \cap X) \setminus \{\overline{0}\}$ is chosen for each $U \cap X \in \mathcal{B}''(n)$, then $\overline{0} \notin \operatorname{cl}\{z_U \colon U \cap X \in \mathcal{B}''(n)\}$. For each of the chosen points z_U , the set $S(U) = \{\alpha \in A \colon z_U(\alpha) = 0\}$ is finite. Since $|\mathcal{B}''(n)| \leq \aleph_n$ the set $S = \bigcup \{S(U) \colon U \cap X \in \mathcal{B}''(n)\}$ has cardinality not exceeding \aleph_n so that we may choose $\beta \in A \setminus S$. But then the neighborhood $X \cap \{z \in Z \colon z(\beta) = 0\}$ of $\overline{0}$ contains no point z_U so that $\overline{0} \notin \operatorname{cl}\{z_U \colon U \cap X \in \mathcal{B}''(n)\}$, as required.

Since the collection $\bigcup \{ \mathcal{B}'(n) \cup \mathcal{B}''(n) : n \geq 1 \}$ is a base for X, the proof is complete.

BIBLIOGRAPHY

- 1. J. Ceder, Some generalization of metric spaces, Pacific J. Math. 11 (1961), 105-125. MR 24 #A1707.
- 2. I. Juhász, Cardinal functions in topology, Math. Center Tracts, North-Holland, Amsterdam, 1971.
- 3. J. Kelley, General topology, Van Nostrand, Princeton, N. J., 1955. MR 16, 1136.
- 4. J. Nagata, On a necessary and sufficient condition of metrizability, J. Inst. Polytech. Osaka City Univ. Ser A Math. 1 (1950), 93-100. MR 13, 264.
- 5. Ju. M. Smirnov, A necessary and sufficient condition for metrizability of a topological space, Dokl. Akad. Nauk SSSR 77 (1951), 197-200. (Russian) MR 12, 845.

DEPARTMENT OF MATHEMATICS, MIAMI UNIVERSITY, OXFORD, OHIO 45056

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PITTSBURGH, PITTSBURGH, PENNSYLVANIA 15260