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HEREDITARILY CLOSURE-PRESERVING
COLLECTIONS AND METRIZATION
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ABSTRACT. In this paper we present a generalization of the
Nagata-Smirnov metrization theorem. We prove that a regular Tl-space
is metrizable if and only if it has a base of open sets which is the union
of countably many hereditarily closure-preserving subcollections. In addi-
tion, we investigate intersections of hereditarily closure-preserving col-
lections of open sets.

A collection K of subsets of a space X is closure-preserving if
AU = U{cl(L)l L € £} for any subcollection £ of K. A collection X
of subsets of X is bereditarily closure-preserving (HCP) if, whenever a sub-
set K(H) CH is chosen for each H € }(, the resulting collection K = {K(H)|
H € H} is closure-preserving. Clearly, every locally finite collection is he-
reditarily closure-preserving. Examples show that closure preserving collec-
tions may fail to be HCP and that HCP collections may fail to be locally
finite. A 0-HCP collection is one which can be written as a countable union
of HCP subcollections.

The classical Nagata-Smirnov metrization theorem [4], [5] asserts that
a regular space’ is metrizable if and only if it has a g-locally finite base.
Regular spaces which have a g-closure-preserving base were introduced by
J. Ceder [1]. Ceder called these spaces ‘M, -spaces’’ and gave examples
which show that M, -spaces need not be first-countable and that even when
they are first-countable they need not be metrizable.

In this paper we consider regular spaces which have a ¢-HCP base.
Such spaces appear to lie between metrizable spaces and M,-spaces. We
will show that they coincide with metrizable spaces.

Lemma 1. Let X be a T, -space and suppose p € X has a neighborhood
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base B of cardinality m. Let { be an HCP collection of subsets of X and
suppose that no member of { contains p. Then some neighborhood of p

meets fewer than m members of H.

Proof. Let ' be the first ordinal with cardinality m. Well order B as
B = {B(a)|a <T'} and suppose each member of B meets at least m members
of H. Inductively choose members H(a) € H for 1 < a <T such that

(a) if a # a' then H(a) # H(a"),

(b) H(a) NB(a) # &.
For each a <I" choose a point g(a) € H(a) N B(a); it is not required that
g(a)’s be distinct. Let K(a) = {g(a)}. Since H is hereditarily closure pre-
serving the set K = | J{K(a)|a <T'} must be closed, and K does not contain
p. Yet each member of B meets K, so K cannot be closed unless it does

contain p.

Corollary 2. Let p be a point of a T -space X. Suppose p has a neigh-
borhood base B whose cardinality is m. If H is any HCP collection such
that for each H € X, p is not an isolated point of H, then some neighborhood

of p meets fewer than m members of H.

Proof. Let H' = {H\ {p}|H € H}. Lemma 1 yields a neighborhood B of
p meeting fewer than M members of H'. Since, fora set H € X, Bn H\ {ph
# & if and only if BN H # @, we see that B meets fewer than m members

of H.

Corollary 3. Let p be a nonisolated point of a T -space X and let it
be an HCP collection of open subsets of X. If p has a countable neighbor-
hood base, then X is locally finite at p.

Lemma 4. Suppose p is a limit point of a set A in a space X and
that there is a Gg-subset G of X which contains p and has GN (A\{p}) =
. Then any HCP collection of neighborhoods of p must be finite.

Proof. Write G = n§G(n)|n > 1} where each G(n) is an open subset of
X. Suppose C is an infinite HCP collection of neighborhoods of p. Let
C(1), C(2), ... be distinct members of C. Define D(1)=A NC(1) NG(1) and
D(n) = D(n — 1) N C(n) N G(n) whenever n > 2. Because C(1) NG(1) is a
neighborhood of p, p is a limit point of D(l)\{p}. However p is not a limit
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point of any set D(n)\D(n + 1) so that because the C(n)’s are distinct mem-
bers of an HCP collection, p cannot be a limit point of the set
UiDx)\D(n + Din>1}= Dl\{p}. That contradiction establishes the lemma.

Theorem 5. A regular space X is metrizable if and only if X has a
0-HCP base of open sets.

Proof. That every metrizable space has such a base follows directly
from the Nagata-Smirnov theorem.

To prove the converse assertion, let B = UiB(n)|n > 1} be a 0-HCP base
for X. Let p be a nonisolated point of X. Then {p} is a Gg-subset of X.
For each fixed m the collection {B € B(m)lp € B} is finite, in light of Lem-
ma 4, so that.p belongs to only countébly many members of B. Thus X is
first-countable at p.

Since X is first-countable, it follows from Corollary 3 that each set
X(n) = {x € X|B(n) is locally finite at x} contains all nonisolated points of
X. Also, each X(n) is an open set. Let B'(n) = {B N X(n)|B € B(n)}. Then
each collection B'(n) is locally finite at all points of X and the collection
B’ = UB'(n)|n > 1} contains a neighborhood base at each nonisolated point
of X.

Let B"(n) = {{x}|ix} € B(n)l. Each B“(n) is a discrete collection in X
so that the collection U{B'(n) U B"(n)|n > 1} is a o-locally finite base for
X. According to the Nagata-Smirnov theorem, X is metrizable.

A more subtle application of Lemma 4 yields a result on ¢-HCP local

bases at a point.

Theorem 6. Suppose p is a nonisolated point of a T -space X and sup-
pose U{B(n)|n > 1} is a 0-HCP base of neighborhoods of p. Then each B(n)
is finite and X is first countable at p.

Proof. For each B € B(n) choose a point y(B) € B\{p}. Since B(n) is
HCP, the set F(n) = {y(B)|B € B(n)} is a closed set. Furthermore p is a
limit point of the set F = UIF(n)|n > 1}. Let G = X\F. Then G isa Gy
subset of X, p € G, and G n(F\{p}) = @&. According to Lemma 4, each col-
lection B(n) must be finite.

In an attempt to simplify the proofs of Theorems 5 and 6—by eliminating
the need for the technical Lemma 4—the authors were led to the conjecture
that if H is an open HCP collection in a space X, then NK is open in X.
Unfortunately, as Example 8 will show, the conjecture is false; however we

can prove
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Proposition 7. If H is an open HCP collection in a Hausdorff k-space
[3] X, then NK is open.4

Proof. One shows that for each (countably) compact set K C X, the
collection {H NK|H € H} contains only finitely many distinct subsets of K.
Hence Kn )= NiH n K|H € H} is the intersection of finitely many rel-
atively open subsets of K, so KN (ﬂH) is relatively open in K for each
compact subset K of X. Since X is a k-space, NH is open in X.

Example 8. There is an open HCP collection K in a hereditarily para-
compact space X such that NH is not open.

To construct X we need a definition and a technical lemma. Let us
say that a function f: {o, wl[ — ?([0, ml[)5, where @, is the first un-
countable ordinal, is admissible if for each a <o, () is a countable

subset of ]a, wl[.

Lemma. Let f: [0, o,[ — P(lo, w,l) be admissible. Then
(1, wl[\U{/(a): 0<a<w,} is uncountable.

Proof. If [1, wl[\ Ul/(a): 0<a< w,} were countable we could obtain
an admissible function g such that Ufg(a)|o < a < w;}=1[I, o,[. Defining
#(0) = 0 and @(B) = inffa: B € g(a)} if 1 < B <w,, we obtain a function
¢: [0, col[ — [o, col[ such that ¢p(B) < B if 0< B < w,y and such that
¢~ () is countable for each a < ®,. But according to a theorem of Alex-
androff and Urysohn [2, p. 79], no such function can exist.

It is clear that if / and g are admissible then so is b, defined by
h(a) = f(a) Ug(a) for each a <w,. For each admissible [, let N/ =
(1, o, \Ulf(a): 0<a <o} andlec W= {N,: [ is admissiblel. Then U
is closed under finite intersections so that we may topologize the set X =
(o, wl] by taking N to be a neighborhood base at w; and by making each
other point isolated. With that topology X is a hereditarily paracompact

Hausdorff space.

4 One can also prove that if X is 2n open HCP collection in a locally con-
nected regular space then K is open, the key lemma being that in any Tl-space
the intersection of an open, countable, HCP collection is open. Given that lemma,
suppose x € | |H where H is an open HCP collection in X, If X were infinite we
could choose distinct members H, of K and (using regularity and local connected-
ness of X) connected open sets Un c Hn in such a way that x € U_ and cl(U
SUpn Hn+1 for each n. But then the set n{Un: n = 1} would be a nonempty,
closed-and-open subset of X which is properly contained in the connected set Ul'
That being impossible, His finite and our assertion is established.

5 #([o, fvl[) denotes the power set of [0, wl[.
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For each a <w,, let H =]a, w,] and let H={H,:0<a <w,} Then
H is a collection of open sets in X and NH = {w,} is not open. To complete
the example, we show that H is HCP. Suppose that S C H for each a <
y; it will be enough to show that if ®, ¢ cl(S,) for each a, then w, ¢
cl(U{Sa: a<w, D. Because W, ¢ cl(§S,) there is an admissible function f,
having S, C Ui/ (B): 0<B< ©,}. By modifying [, if necessary, we may
assume that  (8) = & whenever B < a. Defining g(f8) = U{/a(B): 0<a<
B} for B < w,, we obtain an admissible function having U{Sa: 0<ac< w1¥
cUtgB): 0<B< ©,} so that w, ¢ c(Uis,: 0<a< w1 as required.

The referee has suggested a possible improvement in our metrization
theorem. Suppose that one considers collections H in a space X with the
property that if a point x(H) € H is chosen for each H € H then the set
{x(H): H € H} is a closed discrete subspace of X; such collections might
reasonably be called weakly HCP. Then is it true that a regular space is
metrizable if it has a o-weakly HCP base? The question has an affirmative
answer provided only k-spaces are considered: the proof of Proposition 7
shows that a k-space having a o-weakly HCP base must be first countable
so that the proof of Theorem 5, beginning with the third paragraph, shows
that X (if regular) is metrizable. However, our next example shows that if
X is not assumed to be a k-space, then the suggested generalization of The-
orem 5 is false.

Example 9. There is a nonmetrizable, hereditarily paracompact space
which has a o-weakly HCP base, .

Proof. Let A be the set of all ordinals having cardinality less than
Nwo. Let Z be the product space {0, 11" and let 0 be the element of Z
having 0(a) = 0 for each a € A. Let X be the set {0} Uiz € Z: the set
{a € A: z(a) = 0} is finite}. Topologize X by making each point of X\ {0}
isolated and by taking basic neighborhoods of 0 to be all sets of the form
UNX where U is a basic neighborhood of 0 in the product space Z. Then
X is hereditarily paracompact and nonmetrizable.

Let B'(n) = {{z}: z € X\ {0} and [{a € A: z(a) = 0}| = »}. Then each
%'(n) is a discrete collection in X. For each basic open neighborhood U
of 0 in Z the set R(U) ={a € A: n [U] = {o}} is finite, where my: Z—

{0, 11, denotes the projection. Let B“(m) ={UNX: U is a basic neighbor-
hood of 0 in Z and R(U) o, mn[}, where w, is the first ordinal of cardi-
nality R . Since each set UNX in B (n) is uniquely determined by the fi-
nite set R(U) of [0, wn[, 1B ()] < K . In order to show that B"(n) is weak-
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ly HCP it will be sufficient to show that if a point z;; € (UN X)\ {6} is
chosen for each UN X € B"(n), then 0 ¢ cliz,: UNX € B"(n)}. For each
of the chosen points z,, the set S(U) = {a € A: zy(a) = 0} is finite. Since
|53"(n)| <R, the set § = Uis): UnXx € 8" (n)} has cardinality not exceed-
ing R so that we may choose Be€ ANS. But then the neighborhood X N
{z € Z z(8) = 0} of 0 contains no point z;, so that 0 4 cl{zU UNXe
B ()}, as required.

Since the collection U{fB'(n) UfB"(n): n > 11 is a base for X, the proof

is complete.
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