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BRANCHING PROCESSES IN SIMPLE RANDOM WALK

MEYER DWASS

ABSTRACT. Let N(a) be the number of overcrossings of height

a in a simple random walk. For p < XA, the process "(O), iV(l),...

is a branching process which eventually becomes extinct. For A <

p, N(0), /V(l),... is a stationary process which is a branching pro-

cess with immigration.

1. Introduction.   We show that a certain branching process and a branch-

ing process with immigration arise in simple random walk when p 4lA.   By

simple random walk we mean the sequence of random variables, SQ, S.,,..,

SQ = 0, S   =Xj+...+ X,72=l12,..., where the  X.'s are independent and

identically distributed;

1     with probability p,

I- 1     with probability   1 - p = q.

Definition 1.   An overcrossing of height a takes place at time n if

S   — a, S  _j = a+l,S. = a for some i < 72.

Definition 2.   N(a) denotes the total number of overcrossings of height

a.   (N(a) is finite if p 4 l/i-)

2. Statement of theorems.

Theorem 1»   For p <]A, N(0), N(l),...  evolves as a branching process

with

EtN^=(l-p/q)/(l-pt/q),   l

E(tN(a+l)\N(a) = k) = [a/(l - pt)]k,        a, k = 0, 1, . . . .

(In other words, each of the elements of the preceding generation inde-

pendently gives rise to a random number of new elements, according to the

progeny generating function  a/(l - pi).)

Theorem 2.   For XA < p, N(0), N(l), . . . evolves as a branching process,
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with immigration, with

E/N(0)= Q _ q/p)/(l -qt/p),

E(rV(« + l)|N(fl) mk)m ip/{l _ qt)]*[p/(l - qt)],        a, k = 0, 1, . . . .

iln other words, each of the elements of the preceding generation inde-

pendently gives rise to a random number of new elements, according to the

progeny generating function p/il — qt); in addition, in each generation there

is an influx of a random number of new individuals by immigration according

to the same generating function p/il — qt).)

3.   Proofs,,   The proofs of Theorems 1 and 2 will proceed as follows.

Step 1.   Define

T - time at which first overcrossing of 0  takes place.   (For p 414,

PiT <<*,)< 1.)

Via) « total number of overcrossings of  a up to time  T.

R^u'j, .... i:  ) = probability of all paths which start at height   1, over-

cross height   1 z'j  times, overcross height  2 z'2  times,..., overcross height

22 i    times; do not overcross height 0  enroute, and end up eventually at

height  1.

*>,.......>-«.*<".s*™\t<~).

Step 2.

(a) *T<i.)J**   PfA-)q/p,   V2<P-

(b) F(^o)|r<oo) = j<z/(i-P')>   p<y2,

¡p/il-qt),      %<p.

Proof,   (a) is a standard fact about simple random walk.   Part (b) follows

from (a) by the computation,

,    ,'        L      ", .       iip/q)ip-   Dkq = pk + 1,      P<%

pivii) = k, t <oo) . ;

(l-  iP-  q/p)kq = qk+\     lA<P-

Step 3.

Eis^{2).sVM\Vil) = k, T<oo) = LVn_1(52.sn)]k,

¿ = 0, l, ... .

Proof.   If k = 0, then V(2) =• • •= V(n)= 0 and the assertion holds, so

assume now that  1 < k.   Suppose that p < Vi.   From the definition of R ,
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P(V(l) = i v .. . , V(n) = in, T < ») = (p/q)Rn(i j, .. ., in)q.

For  1 < k, we also have

P(V(1) = k, V(2) = i2. .... V(n) = 2n< T < oo)

= Z(P/î)1>R„_i0'12. •••■ /J?].l>R„-i(/*2' •••' i»«^1«

where the summation is over all vector sums of k (n - l)-tuples such that

(y12..... /,„) + • • • + dk2. ■ • ■. fkn) = it2.'„)■

Hence, computing generating functions, we have

E(s^(1).sVMyV(l) = k, T<c)
1 n

= (p/q){qE(sV2^.sV(n-l). j < oo)]kq

from which the result follows by dividing through by  P(V(l) » k, T < °®) m

p       .   The proof for lA < p  is similar and is left to the reader.

Proof.

Fis^1).sVM\T<~)1

= ^ £(s^D.s^n)\V(l) = k,T< oo)P(V(l) = A|T < »)

= Zsi^„-i(52' •••' ^J]feP(l/(l) = ^|T<=o)    (by Step 3).

This last expression equals the right side of the assertion.

Step 5.   Let  Y(0), Y(l), Y(2),. .. be a branching process with  Y(0)= 1

and £(rY(n+1)|Y(72) = k) = Fk(t).

Define the joint generating function of  Y(l), . . . , Y(n) to be

Wn(s1,...,sn) = F(s[n>..j4

Then,

Wn(s1,...,sn) = F(s1»/n_1(s2.*„».

The joint distribution of   ^(1), . . . , ^(22) is uniquely determined by this iter-

ative relationship.
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Proof»

E(s\<».**<»>) =£E(sf(1>.s*M\Yil) = k)PiYil) = k)
k

= Zsk¿W«-¿s2> ...,sn)]kPiYil) = k) = Fis1Wn_1is2,...,sn)).

k

Step 6.   Under the condition that  T < oc) the process  V(l), V(2),. ..

coincides in distribution with a branching process   Y(l), Y(2),.. . , where

Y(0) = 1 and

Pt)]\       P<%,

pt)]k,       Y2<p,       n, k = 0, 1, ... .\[p/(l

Proof.   It follows from Steps 4 and 5 and 2(b) that

EisY^.sVM\T<~) = EisY^.sYM)
1 t?        ' I n

for all 72 = 1, 2, . . .   .

Completion of proof of Theorem 1.   Suppose that p <Vi.   If N(0) = 0 then

automatically N(l) = N(2) = .. .= 0.   Suppose that N(0) = k>0.   Define

(V .(l), V .(2), „ . . , V .in)) = V. to be the number of overcrossings of heights

1, 2, .. . , n between the time of the (z - l)st and z'th overcrossing of height

0.   (V^ia) is the same as   V(a) as defined earlier.)   Then:

(a) the random vectors  Vj, V2, . . .   are independent and identically

distributed in the sense that

P(Vl=vv ..., Vk = vk\NiO) = k)

= P(V1 =Vl\T<co).P(Vk = vk\T<«,),

P(V. = v) does not depend on  i.

(b) Nia) = V¿a)+-..+■ VN(0) if   zV(0) is positive.

(c) P(N(0) - k) =. ip/q)kH - p/q), k = 0, 1.

By Step 6, the proof of the theorem is now complete.

Completion of proof of Theorem 2.   For lA < p, it is no longer true that

if N(0) = 0 that N(l), N(2),... are also zero.   We must now be concerned

with the overcrossings of height  a + 1   after the last overcrossing of height

a.   The number of such overcrossings plays the role of the immigration into

the population at each generation.   An easy computation shows that P(/V(l)

= ¿|/V(0) = 0, SQ = 0) = pqk, k = 0, 1.   For the rest, the proof is similar

to that of Theorem 1 and we leave the details to the reader.
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4.   Complements.   Suppose that p <1A.   A direct calculation shows that

!l - (p/q)a + l,

(p/q)a(p/q)k^ - p/q)>     0<k-

Hence,

(4.1) Ga(t) = EtNW = 1 - ip/q)a + lH - t)/(l - Pt/q).

Let F(t) denote the progeny generating function, F(t) = a/(l - pt).   Since

N(a) evolves as a branching process, we must have that

(4.2) Ga(t) = G0(F(a)(t)),       a =1,2, ...,

where  F(a)  is the a-fold iteration given by  F(a)(t) = F(F{a- l)(t)), a = 2, 3, ... .

It is easy to verify directly by induction that (4.1) satisfies (4.2).

For A ■< p  we have that

EtN^a) = (1 - q/p)/(\ - qt/p) = Git),        a = 1, 2, ... .

(Since N(a) is a Markov chain it follows that it is a strictly stationary pro-

cess,) Since N(0), N(l), . . . evolves as a branching process with immigra-

tion, we must have that

(4.3) G(t) = G(F(t))p/(l - qt)

reflecting the relationship between N(a + l) and N(a) stated in Theorem 2,

with  F(t) = p/(l — qt).   It is easy to verify that (4.3) holds directly.

For p < A, N(a) must equal 0  for sufficiently large  a.    This is con-

sistent with the fact that

— q/(\ -pi)
dt

^p/q<\.

In other words, if the expected number of progeny is less than   1, the branch-

ing process becomes extinct with probability   1.

5.   References.   The elementary facts that are needed about random

walk and about branching processes can be found in [l].
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