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THE CYCLOTOMIC NUMBERS OF ORDER SEVEN1

PHILIP A. LEONARD AND KENNETH S. WILLIAMS

ABSTRACT. The cyclotomic numbers of order seven are given in terms of

the solutions of a certain system of three quadratic diophantine equations.

This is analogous to L. E. Dickson's evaluation of the cyclotomic numbers

of order   five, and is a convenient approach for applications to the theory of

power residues.

1. Introduction.   Let  g be a primitive root of an odd prime   p.  Let

e > 1  be a divisior of   p - 1  and write   p - 1 = ef.  The cyclotomic number

(h, k) = (h, k)    is defined to be the number of solutions   s    t of the tri-

nomial congruence

(1.1) ges + h+ l = ge' + Mmodp),        0  <s,  t <f - 1.

A central problem in the theory of cyclotomy is to obtain formulae for the

numbers  (h, k). The cases   e = 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18 and

20 have been treated by several authors, beginning with  L. E. Dickson [2]-

[4], with fuller treatments due to Emma Lehmer ([6],  e = 8), A. L. Whiteman

([13]—[15], e = 10, 12, 16), J. B. Muskat ([9], e = 14), L. Baumert and H.

Fredricksen ([l],  e = 9, 18),  and Muskat and Whiteman ([10],  e = 20).

When   e = 7 the cyclotomic numbers can be given in terms of certain

Dickson-Hurwitz sums using the work of Muskat L9, Theorem l] or a theorem

of Whiteman [15, Theorem l].  In this paper we obtain these cyclotomic

numbers in terms of the solutions of a certain triple of diophantine equations,

analogous to the expressions for the cyclotomic numbers of order 5 in terms

of the solutions of a pair of diophantine equations (see for example 115,

p. lOl]). This formulation is often useful in applications (see §3). We make

use of the following recent result of the authors [7, Theorems 2 and 3l.  If

p = 1  (mod 7) then there are exactly six integral simultaneous solutions of
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the triple of diophantine equations

(1.2)

(L3)

(1-4)

72p = 2x\ + 42(x2 + x2 + x2) + 343(x2 + 3x2);

12x^ - 12x^ + 147x^ - 441x? + 56x.x,
2 4 5 6 16

+ 24X.X, - 24x.,x. + 48x,x. + 98x,x,
23 24 34 5   6

12x^ - 12x^ + 49x^ - 147x3 + 28x,xc
3 4 5 6 15

•

+ 28x,x. + 48x.,x, + 24x_x„ + 24x,x, + 490x,x^
16 23 24 34 56

o,

satisfying  x, = 1  (mod 7), distinct from the two   "trivial" solutions

(—6r, ±222, ±2zz, +2zz, 0, 0), where  t is given uniquely and u is given ambiguously by

(1.5) p = t2 + lu2, t = 1 (mod 7).

If  (xj,  x2, x,, x., x., xA is a nontrivial solution with  x^=l  (mod 7) then

two others are given by  (*,, -*,> x4, x2, Vii-x^ - 3x6),  %(x5 - x6)) and

(jfj, -*4> *2' -x3> Ai-x^ + 3x6), Vii-x. - x6)).  Each of the other three can

be obtained from one given above by changing the signs of  x2, x,, x,.  It is

surprising to us that this result, which parallels a similar result (see for

example [2, I, Theorem 8]) for  p = 1  (mod 5), and which is implicit in the

work of Dickson [2], [3], does not appear in the literature.  See [5] and [11,

p. 128] for comments related to  p = 1  (mod 7).

2.  Calculation of the cyclotomic numbers of order 7.  The numbers

ih, k) satisfy the following well-known relations [11, p. 25]:

(2.1) ih, k) = ih + ae, k + be)    for any integers  a and b,

(2.2) ih, k) = ik, h)    if / is even,

(2-3) ih, k) = ie - h, k - h).

With  e = 7  the formulae (2.1), (2.2), (2.3) yield the matrix
J

(2.4)

B

G

C    D    E

C    H

1

1
K

II

H

F

K

L

L

1     J

K

E

J
L

L

J
D

l

F G

K H

L I

L J

I K

C H

I     J     K    H    B]
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in which the letter in the hth row and /eth column,   h, k = 0, 1 , 2, • • • , 6,

represents the value of (h, k). Thus the evaluation of the   e    =49 cyclo-

tomic numbers of order  7 reduces to the determination of the  12 quantities

A, B, C, D, E, F, G, H, I, J, K, L. (2.4) has been given by Whiteman [12, p. 63l.

Let g be any primitive root of the prime  p = 1   (mod 7) and set  C =

exp(2772'/7).  For any integers   m and  n we define the Jacobi sum  ](m, 22) by

p-1
., > »r-> ymind„ x + n ind„y
/(2?2,   22) = 2, C •

x, y = 1 ;x + y= 1 (mod 2>)

where  ind  x denotes the unique integer  k such that  x = g    (mod p), 0 <

k < p — 2.  It was shown in 17] that

6

(2.5) /(I, 1) = Z c¿!'

2 = 1

the integers   Cj, • • • , c6  being given by

12c, = -2x. + 6x_ + 7x_ + 21x,,        12c . = - 2x, - 6x   - 14x,,
1 125 6' 4 14 5'

(2.6) L2c2 = -2xL + 6x3 + 7x5 - 21x6,        12c5 = -2*j - 6x? + 7x? - 21x6,

12c   = - 2Xj + 6x   - 14x 12c6 = - 2xj - 6x 2 + 7x5 + 21x6,

where  (xt, x2, x^, x4, x^, x^) is a nontrivial solution of (1.1)—(1.3) satis-

fying Xj = 1  (mod 7),  and

(2.7) /(I, 2) = -r+ *»/-?,

where the integers   t and   u satisfy  p = t   +7u  ,  t = 1  (mod 7).

The Dickson-Hurwitz sums of order 7 are defined by

(2.8) J(l, i) = Z B(i, j)C       (/ = 0, l,..-,6),

and

(2.9) Z  3(i. 7) = P - 2.
2=0

They have the following properties (see for example [15, p. 97]):

(2.10) B(i, /)= 3(¿, 6-;),

!f - 1     if 1 = 0,
-,  ,      -jut

/ if 1 < 1 < 6,
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(2.12) BÜ, j) = Biij, j)    if j 4 0 and ß = 1  (mod 7).

Since  2/=1c; =-Xj by (2.6), (2.8) and (2.9) we obtain for  z = 1, 2, • • •, 6,

(2.13) Bii,  I) = c. + ß(0, D = c. + ip-2 + x.)/l.
Z I I

Also as -1 = C+ C + 0 + C4 + 0 + ¿*  and  yfî = C+ ̂  - C + C -
C5 - ¿6, we obtain from (1.5), (2.7), (2.8), (2.9)

7B(0, 2) = ~6t + p - 2,

(2.14) 7/3(1, 2) = 7/3(2, 2) = 7/3(4, 2) = t + lu + p - 2,

7B(3, 2) = 7/3(5, 2) = 7.3(6, 2) = / - lu + p - 2.

Equation (2.14) is due to Muskat [9, p. 270]. Whiteman [15, Theorem l] has

shown that

6 (l     if 1 \h,
lib, k) =  Y  Bivh +k, v)-6f+ I

_n (0    if   7 \h.

Using this together with (2.6), (2.10), (2.11), (2.12), (2.13) and (2.14) we

obtain the cyclotomic numbers in terms of t, u, x. ,'• • •, Xg. In applying

these expressions given in the Theorem below we must indicate how the

sign of u is to be chosen given a nontrivial solution (x,, ••• , x6) of (1.2)—

(1.4) satisfying x^=l (mod 7). If 1 ~] u this is easy as we see from the

Theorem that l(B — G) = 4u + 2x2 — x,, so we need only choose u such

that

(2.15) Z2 = 3x2 + 2x?  (mod 7).

If however 7 | u it appears to be necessary to use (2.5), (2.6), (2.7) and the

identity

(2.16) pjil, 2) = Jil, l)/(2, 2)/(4, 4).

Thus, for example, when   p = 379 a nontrivial solution of (1.2)—(1.4) with

Xj = 1  (mod 7) is given by

x1 = -13,    x2 = 10,    x?=13,    x4 = -12,    x5 = -5,    *6=1,

and so bv (2.6) we have'

Cj = 6,    c2 = 4,    c3 = 2,    c4=l4,    c5 = -9,    c6 = -4.

Using these values in (2.5) and computing  jil,   l) JÍ2, 2) J(4, 4) we obtain

from (2.7) and(2.16) that  t = -6,   u = -7'.
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Theorem.   Let p be a prime = 1   (mod 7).   // (x,, • • • , x,)  is any non-

trivial solution of (1.2)—(1.4) with xl = 1   (mod 7) and (t, u)  is the solution

of (1.5) with  t = 1   (mod 7)  and u given by (2.15) or by (2.16) as indicated

above, then for some primitive root g  (mod p)  the cyclotomic numbers of

order 1   are given by (2.4) and

49A = p- 20- 12/+ 3*,,

588B = 12/7 - 72 + 24/ + l68zz - 6xl + 84x2 - 42x? + 147x4 + l47x6,

588C = I2p -12+ 24t + l68u - 6xl + 84x3 + 42x4 - 294x6,

588D = 12p - 72 + 24/ - 168m - 6x 1 + 42x2 + 84x4 - I47x? + 147x6,

588E = 12p - 72 + 24/ + I68zz - 6xl - 42x2 - 84x4 - 147x$ + 147x6,

588F = 12p - 72 + 24/ - I68zz - 6x { - 84x? - 42x4 - 294x6,

588G = 12p - 72 + 24/ - 168« - 6xl - 84x2 + 42x3 + 147x5 + 147x6,

588// = I2p + 12 + 24/ + 8x   - 196x

588/ = 12p + 12 - 60/ - 84zz - 6xj + 42x2 + 42x3 - 42x4,

588/ = 12/J + 12 + 24/ + 8Xj + 98x$ - 294x6,

588K = 12/J + 12 - 60/ + 84zz - 6x, - 42x2 - 42x? + 42x4,

588L = 12p + 12 + 24/ + 8xt + 98x? + 294x6.

3.  An application.  It is well known (see for example [11, p. 26]) that

2  is a seventh power (mod p) if and only if (0, 0) = 1   (mod 2), that is by the

Theorem if and only if  x, = 0 (mod 2).  Note that  Xj = 1   (mod 7) is given

uniquely by the system (1.2)—(1.4).   For further results of this kind see [8].
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