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ON ERGODIC SEQUENCES OF MEASURES

J. R. BLUM1 AND R. COGBURN

ABSTRACT. Let  Z  be the group of integers and  Z  its Bohr compacti-

fication.  A sequence of probability measures  \p , zz = 1, 2,. . . I defined

on Z   is said to be ergodic provided p     converges weakly to M, the Haar

measure on  Z.   Let  A    C Z, zz = 1, 2,. . . , and define  p     by p-   (B) =
77 ' '      ' ' 7Z        ' 7Z

\A    n  B|/|<4   I   where    |/3|    is the cardinality of  B.   Then it is easy to show

that if |A    n A    + k\/\A   | -» 1  for every k £ Z, then p     is ergodic.  Let

0 <p,  s 1,  In this paper we construct (random) sequences  \p   ] which are

ergodic, and such that  lim(|/l    n A   + k\/\A   |) = p., for every k e Z.

1. Introduction.   Let G be a locally compact abelian (I.e.a.) group.  Let

[p , zz = 1, 2,... Î be a sequence of probability measures defined on the

Borel sets of  G.   We shall say that such a sequence is ergodic provided p

converges weakly to p, where p. is Haar measure on the Bohr compactifica-

tion of  G.   The reason for this terminology is that ergodicity of such a se-

quence is necessary and sufficient for the generalized mean ergodic theorem

to hold:   let [U , g £ G] be any strongly continuous unitary representation G

on a Hilbert space  H.  We say that the generalized mean ergodic theorem

holds with respect to the sequence  \p  ] provided  lim _,„<,/.- U   fp idg) = Pf

strongly, for every / £ H, where  P  is the projection of H on the space

U\Ugf = f.geG].
As mentioned above and shown in [l], the generalized mean ergodic

theorem holds for a sequence  [p  ] it and only if the sequence is ergodic.

Let  \A   i be a sequence of Borel subsets of  G, with piA   ) < », where p is

Haar measure on  G.   For g £ G  let A  g  be  A     translated by g.   Define the

probability measures  p    by

PniB) = piAn n B)/p(AJ,

fot B a Borel set.

It is easy to show that if lim    ^ (p(A    n A  g)/piA  )) = 1  for every

g £ G  then pn  is an ergodic sequence.  Such sequences will exist if and
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only if G is ff-compact. (See, e.g., [2].) That the above condition is not

necessary was shown in [lj.

Now let  G = Z, the group of integers, and let  \k., j = 1, 2,. .. !  be a

sequence of positive integers.  Let A    = [ky, . . . , &n¡  and define pn as

above by p (ß) = |A    O B|/|Á  |, when |A|   is the cardinality of A. Clearly

each p    may be thought of as a measure on Z, the Bohr compactification of

Z, and it follows   from the Levy continuity theorem that pn is ergodic if and only if

„

(1) lim - Y,  e2îTlkja= 0    for 0 < a < 1.
77—00 j

From the criterion -.lentioned above it follows that such sequences will have

this property provided  |A   n A    + k\/\A  | — 1  for every integer k, where

A    + k is  A     translated by  k.   In a personal communication to one of the

authors, Niederreiter [3] proved that given p, with 0 < p < 1, and a positive

integer k, there exists (in fact, he constructed it) a sequence  [k.] such that

IA    (DA   + k\
lim __21_^-22-= p

7Z-.CO A1      7Z1

and such that the corresponding measures [p ] ate ergodic. In this note we

prove that given pk with 0 < pk < 1, there exist (uncountably many) random

sequences  \k] suchthat

(a) the corresponding sequences of measures are ergodic, and

(b) for every integer  k 4 0 we have

A   nA   + k\
um      '   "  ,     "- = Pk-

7Z-.O0 A
1      7Z '

In fact we show that (a) and (b) are true on a set of probability one.

As mentioned above, what must be shown is that (1) holds for all a.

For the kind of sequences we construct it was shown by Robbins [4] that

this holds for each a on a set of probability one, and the problem is to con-

struct a single set of probability one such that the limiting relation holds

for all a simultaneously.  We also consider this problem for the group of reals.

2. The main result.  Let Xj, X2,. . .   be a sequence of independent,

identically distributed random variables with  characteristic function

cf>(a) =EeiaXK

Let S   = X, + • • • + X    and
ni n

n

r(a)Jy  ela  k.
77 72    ¿—>

k=l
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Theorem.  // </>(a) 4 I  for ß < a < y and if E(Xy)  is finite, then

suP/j<a<y I ̂  ^a^l —' 0  almost surely as  n —> oo.

Proof.   It is shown in the Lemma below that  supo<a<yE|T (<x)|

0(72"   ). Now let  k be integer valued and set

/7)| < I/rz1/7!.

Then, using Boole's and Chebychev's inequalities and the Lemma,

I    = ("       max        \T ik/n9/,y

"     L/3<fe/„9/7<r      "

PiA<A < ¿Z P[\ Tnik/n9/7)\2 > l/n2/l]

k:ß<k/n9/7<y

Z Oin-1°/1)=0in-1/7).

k:ß<k/n^/7<7

Also

sup
dâ    n

T (a)
-   72    ¿—I     '     k

k=l

and, letting p = E|X.|,

Ab

I
;=l

E\Sk\<Z E\X.\ = ku.

Let

B   = [sup I f T (a)   < T28/7!.

By Markov's inequality

PiBc) <    1    dl f  K|\ <£^=. 0(72-1/y).
"   -    8/7     \n ¿-   '   zV j -    15/7

n \   k=\ ?     *

On A  B    we have
7Z      7Z

8/77      '

sup   |TU)|<    1    +JL^=oU-1/7),
/3<a<7 721/7        2729/7

while  PÍA  B  Y = 0(t2_1,/7)  from the above estimates.

The proof is completed by using the Borel strong law of large numbers

(    8 )
argument:  for the subsequence  ¡72    ,

V PÍA    B  8)c = £0(72-8/7)<oo
77     77

TZ

and so sup/3<a<y |Tn8(a)| — 0 almost surely.
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Now for any  zzz, there exists an  72  such that  72    < zzz < (72 + l)  , and

|(|T>)|-|r>)|)|<|Tm(a)-'rB(aj|

-    Z iaS i

fe=7Zb + l

tt-ïVÊ'"'"

< 2 0
M

uniformly in a.  The Theorem follows.

In the Lemma below we have occasion to use the relation valid for any

complex  a and  b with  |zz| < 1  and a 4 I:

v

(*)

^+1

1 - zz

2\b\ 2\b\

A- a       11 - a\

We also use without further comment the fact that, since the X, 's are

independent and identically distributed, for any  k > j,

-  z'a(Si-S)        ,   ví_í
Ee       K     '   = chía)     '

and the fact that cpi-a) = <p(a) and  |</>(a)| < 1.

Lemma . // cpia) 4 1  for ß < a < y then

sup    E\T (a)|4= Od/722).
ß<a<y

Proof.   First observe that

E\T (a)|4= EÍT (a)2T (a)2)'      TZ TZ 7Z

_ Í_ Y Eeia(Si+S^~Sl~Sm)

j ,k,l ,m~ 1

J4(Z1 + Z2 + Z3 + Z4)
72      \

where

Z>) = ¿ Ee^sj+Sk-Srsm\

y,Ze,/,m=l;|l;,/e,/,77z!| = v

The modulus of each term in the sum for 2V is at most one, so  |S,| = 0(tz)

and  |22| =0(z22).

It is best to break  2,   into two sums, 2,  and  2,, where  S,   consists

of those terms of 2,   which for j = k or  / = zzz and 2 ,   consists of those
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terms of 2,  for which  |i/, k] (D [I, m]\ = 1.  Then

363

Z>)

_ 4

Refz r(2S;-Sfe-S,)

y^/e*/

Re

Ref   ¿Z    m2aV-kd^ia)k-U ^(a)'-kcbia)k-1 + cf>ia)'-kcp(2a)k-1
i>k>l

IY. <p(2aY-k
j>k i>k* 11 - <f>(a)

= 0(tz2)/|1 -rA(a)|.

where the inequality uses (*).

Similarly, using (*) in the last equality,

E<M2a)*-'
Ze>/

Z>) = 4 X  EeMSrsk

j*k*l

= 8(72 - 2) Re
Z <p^j~k\
j>k I

0(722)/|l-á(a)|

To estimate 2.   we will first write it in terms of ordered summation in-

dices, j > k > I > m.   There are then six types of terms according to the posi-

tion of the two positive signs among + S. ± S.  ± S. ± S   . These can be

coalesced  into three types of terms by adding conjugates, to give

Z>)
4

Re(     Z       [Eeia(S^Sk~Sl-Sm)+Eeia(S'-Sk+SrSm)

\j>k>l>m

+ Eeia(SrSk-Sl+Sm

£      [cf>iaV-kcpi2a)k-lcbia)l-m + </>(a)'-fe+z-

j>k>l>m

16

-\il-cpioi

= 0(rz2)/|l-cS(a)|2.

Z    cp(2a)k-lcpia)1-

k>l>m

2z2

+ cp(a)'-kcp(a)l-m]

Z W'
l>m

Here (*) is used twice, at the inequality and the last equality.

Combining these estimates,
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sup    FlT^a)!4      -j-    sup   -
(An2) J

-,-„• — ,        -3-    SUP   T-:-Tz   x
ß<a<y n      ß<a.<y 11 - cHa)

The hypothesis of the Lemma, together with the continuity of </>, imply that

the supremum is finite, and the assertion is proved.

Let £(r/), for  d > 0, denote the lattice  iO, ± d, ± 2d,. ..].  We will say

that  X  is an x(z/)  lattice variable if  P[X £ S.id)] = 1   but there is no  d' > d

such that  P[X £ ¿tid')] = 1.  It is well known that X  is an S.id)  lattice vari-

able if and only if cpia) 4 1  for 0 < a < 2rr/d and cpÍ2rr/d) = 1.

Corollary 1.   If X.   is an Ml)  lattice variable, then there exists a null

set  N not depending on a such that, except on N, T (a) —> 0  as n —> oo for

every a 4 0 (mod 2z7).

Proof.  In this case the  T (a) as well as  c/>(a) are periodic of period

277.  By the Theorem, for any k > 0, supy .. <a< 2jj_ ... \f (a)| —.0 as n —• oo

except on a jiull set N,.

Evidently we can take  N = UT=1 Nk  to ^e tne set sp^if^ ln tne corollary.

We will say that  X  is a nonlattice variable if X is not an S.(d)  lattice

variable for any d > 0 and if  P[X 4 0] > 0„  This is the case if and only if

cp(a) 4 1   for any cl 4 0.  Then in the same way as for the first corollary we

have the following result.

Corollary 2.   // X,   is a nonlattice variable, then there exists a null set

N not depending on a. such that, except on N, T (a) —> 0 as n —> oo for

every a 4 0.

Let

r(8)      H5l»".yn»*l + *. •■•.*. + »»

\\Sy,...,Sj\

We will consider only the case that X. > 0  so  MS.,..., S
J r i .77

Lattice case.   Let  Xy  be an £(l)  lattice variable.  The

k=2
1  —► oo.

Continuous case.   Let  Xy be a nonlattice variable.  Then

77

( P\\ 1     \~*
n     ' ~ n  Z~i   X[Xi,= S   or XJre+X^+i=8 0r   ••.   or X^  +••• +xn=M

k=2

77 — 2 n — j

= - y y v
n  ¿^    ¿^   XAk  ■

j= 0   k=2
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where

Let Ak = U°°=0 Ak , and let p. = PiAl .) and p = P(Aj). Then by the

ergodic theorem
7z n

V  -i, a-s.   ., 1   V  -,        a,s.   j,
« ¿- x*k.j—,pi>    ñ¿ZxAk—^p

k=i k=i

as  zz —• oo.  But we have  r (8) < n~   2"_2 x¿     s°  üm sup r (5) < p.   On the

other hand, by Fatou's lemma,

» I    n—j V oo

lim inf r(8) > £  lim inf U £   XAfe>.) = £   Pf* P
y=o \   k=2 7     7=0

since A, = IJ. A,   . and the sets in the union are disjoint. Thus  r Í8) -^—»P>1       v,      I §; > n

as 72 —> oo. Clearly p = 0 except for at most a countable set of <5 values.

3. Concluding remarks. Now let X,, X,,...  be i_(l) random variables.

Then it follows from the results in §2 that if we define  k. « X, +.•••+ X.

the corresponding sequences of measures satisfy conditions (a) and (b) of

Vl with probability one.

The results also apply to the case when  G = R, the additive group of

real numbers. For if Xj, X2,. ..  are positive nonlattice random variables we

can apply Corollary 2 to show that lim    T (a) = 0 for all a 4 0 with proba-

bility one.  Thus if k.~Xy+... + X., and if  YÍt), t > 0 is a stationary

stochastic process we see that the mean ergodic theorem applies to the

averages  n~   2"_,  YÍk.) provided the process is second order.
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