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SOME PROBLEMS OF NONLINEAR INTEGRAL

EQUATIONS IN MEASURE SPACES

R. R. SHARMA

ABSTRACT. An existence theorem is proved by the method of succes-

sive approximations for abstract nonlinear integral equations formulated

in [lj.  Some integral inequalities and extremal solutions are also con-

sidered.

1. Introduction.  Let (X, JR, zi) be a measure space and let A  denote

the set of all real or complex measures on JR.  Consider the equation

(1.1) \(E) = viE)+( fix, A) dp.

where v £ A, Ax: Ax M —» R fot each x £ X, f: X x R —> R, E    e JR.

Abstract integral equations of this form have been considered in [l].   A mea-

sure A e A  is defined to be a solution of (1.1) on F  if E. C F  and the

equation (1.1) is satisfied for all F £ E O JR.  Note that A  may be considered

to be a member of A(F)  where A(F)  denotes the set of restrictions of all

A £ A to F Cl JR. It is clear that A satisfies (1.1) for all F e E O JR  if it

satisfies (1.1) for F £ \y  where Cf  is a subclass of E O JR  which generates

the cr-algebra F O JR   and is such that the restriction of every measure on

E Ci JR  to y  has a unique a-additive extension to F O JR.  Thus, for A to be

a solution of (1.1) on  E, we need verify (1.1) in Cj  only.  C,  is called a "g-

class" for the measurable space (E, E Cl JR).  In [1], a theorem concerning

local existence and uniqueness of solutions of (1.1) is proved, and it is

shown that (1.1) includes as particular cases certain classes of integral

equations and also abstract measure differential equations considered in

[2],  [3]  and [4].

In this paper we consider the problems of local existence of solutions

by successive approximations, integral inequalities and the existence of ex-

tremal solutions.

2. Existence of solutions.   For A, B e JR, we define an inclusion rela-

tion with respect to p. as follows:
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A C B[u] if and only if  \p\(A - B) = 0,

where  \a\   denotes the total variation measure of p.  A   and B  ate defined

to be equal with respect to p if A C B[u]  and B C A[p].  Thus, A = B[u]  if

and only if  \fi\(A A B) = 0.

Let JR.   be the set of all elements Eel  for which |/¿|(E) < <*>.  For A,

B el., define

(2.1) p(A, B) = \u\(A A S).

It can be easily verified that M     is a metric space.

Lemma 1.   Let E £ M      If v £ A(E) area" u « |/j|  022 EOl, then the

functions p., \u\  and v are all uniformly continuous on  E C\ JR.

Proof.  The uniform continuity of p  follows from the relation

\p(A) - p(B)\ = \p(A - B) - p(B - A)\ < \fi(A - B)\ + \p.(B - A)\

< \p\(A - B) + \p.(B - A)\= p(A, B)

where A, B £ E ni.

Note that p.  can be replaced by  \u\   in the above relation which proves

the desired result for  \¡i\.

To prove the result for v, let e > 0.  Since v « \p\   on  E, there exists

a S> 0  such that  \v(F)\ < e/2 fot all F e F n )ïï  such that  \p:\(E) < 8.  Then

if A, B £ EC\%, we have

|iXA) - v(B)\ = MA - B) - v(B - A)\

< \v(A - B)\ + |iv(B - A)\ < e/2 + e/2 = f

when p(A, B) = |f2.|(A - B)+ |/x|(B - A) <S.  Thus iy is uniformly continuous

on FnTH.

Lemma 2.  Let E e %      Then Ë C\%  is a closed subset of 51Í

Proof.   Let Fr £ Ënllï, F e )ll0   and p(Fn, F) — 0  as 72   -+«..  The in-

equality  |fi|(F - En) < p(E   , F)  implies that  \p\(F - E  ) —» 0  as 72 —» °o.

Since each E   C F, we have F - E C F - E    for all 22. Therefore, |/¿|(F - E)

< |^|(F - E ). Letting 27 —> <*>, we then obtain  |/x|(F - E) = 0, i.e.  F C c[ft].

Thus there exists a set  E £ HÍ     such that E C E  and E = FfyJ.  Since E

and F  are regarded identical in the metric space IÍÍ  , E n JIÏ   is closed.

We now prove the following local existence theorem which is analogous

to Carathéodory's existence theorem for ordinary differential equations.
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Theorem 1.  Let E   C E    where E     E    e JR     and suppose that (E   -EA

ClJR  is compact in the topology generated by the metric p defined by (2.1).

Define

(2.2) Aa(^Ei) = ! A e A(E1): VE -E   (A - v) - aS

where Vg   _E    denotes the variation on E   - E .  Let f satisfy the following

(I) ¡(x, A )  is measurable on E    for each fixed A £ A (E   );

(ii) if lim^A^E) = \(E), E £ Et n JR, then  Um^J(x, A*) = /(x, *o)

/or each x £ Ex;

(iii) i/zere exists a pt-integrable function  U  on  E.   such that  \f(x, A )|

< U(x) for all A £ Aa(Ej).

Suppose further that there exists a "g-class" for E.   such that given

any two sets in y, 022c is contained in the other.  Let p: be nonatomic, and

v <& \p\   on (E   — E  )Cl JR.   Then there exists a solution of (1.1) 072 some set

Ë   z'22   JR„.
0

Proof.  Since p. is nonatomic, there exists a set E £ Cf   such that E    C

E and

(2.3) L [/(«WM <«•
0

For each j - 1, 2,_, there exist sets E1,  £ E C\ §   (/e = 0, 1, ... , ; ) such

that

E0 = E'0 C E\ C E>2 C . .. C Ei = E>]

and

W(E1 - EÍ- 0 = ÎV^IfiKÊ - E0),        ¿=1,2,...,;'.

Thus, if r(l//1#-E0), then

(2.4) WCB¿)- MV + **)«      *=1. 2. ••••/'•
—     to

For E e Ed C() define

A'(E) = iy(E) for  E C E{,

(2.5) = -(£) + /G_Eo /(x, AÓzitx    for Eik C E Ç E{^,

k= 1, 2, ... , 7- 1,

where C £ E il §  is such that E' _    C C C £',   and

(2.6) |H(g-£!_,) = H(£- *£),     * = 1,2,...,;'- 1.
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Clearly A1   is defined on E O § .  For any fixed / > 1, the first formula

in (2.5) defines A7   on E j n y   and the second formula extends X'  on  E7 O y.

Also note that if X1  is defined on EJ,C\y  fot 1 < k < j, then the second for-

mula defines \!  on EÍ   , n §.  Thus (2.5) defines \'  on E ny  which can

then be extended to the a-algebra E O m.  Furthermore, since any A £ A(E),

where E C E     can be extended to a measure A,  £ A(E ), by defining A.(F)

= A(E n F) for F e Ex O M, it follows by (iii) that  |/(x, ,V )| < U(x).  There-

fore,

V=   F (A7 - v) <   f-   „   (J(x)aVI < a.

Thus, a' e Aa(I).

Let Ej, E2 6 (Ë-E0)O'l.  Then

A'iEj) - \'(E2) = víEj - E2) - r,(£2 - Ej)

+ L     p   /(x' Ai} ^ - Jp     p   M*> Aí> 4<-
£1-E2 *^E2-E1 *

Therefore,

IA'XEj) - A?'(E2)|

(2-7) < IH«^, - E2) u (E2 - Ej)) +   f „    P WR    H   U(x)d\p\-
-  '    '        1 2 2 1 J(Ei-£2)u(E2-El)

Since iv « \(i\   on (E    - EQ)n )K, by hypothesis, and a> << \p\   where oj(E) =

j"E'J(x)a'|/j|, v and a>  are uniformly continuous on (E - £Q)P M  by Lemma 1.

It therefore follows from (2.7) that  !A7 Î   is an equicontinuous set of functions

on (E - E  )n 111.  Also, since A7 € Afl(E), {A7 !  is uniformly bounded on

(E-E  )n%.  By Lemma 2, (E - E  ) CilH  is a closed (and hence compact)

subset of the compact space (E    - E  ) n ?R.   Therefore, by the Arzela-Ascoli

theorem, iA7 i  is conditionally compact in the space C((E — E  ) n M  of all

bounded continuous scalar functions on (E - E )n ni. Hence there exists a

subsequence ¡A7"! of iA7 S  and a function A £ C((E - E  )n M)  such that A7"

—» A uniformly on (E - EQ) nl  as « -> ».  We extend Ä to E C\ )li  by defining

A(E) = v(E) for E e E0 n )li.  Then we have

(2.8) lim A7"(E) = X(E),       EeÊnl
n—*oo

It now follows, by (ii), that

lim   f(x, A7^) = f(x, Xx),       x £ E - E0.
22—»00

By Lebesgue's dominated convergence theorem, we obtain



NONLINEAR INTEGRAL   EQUATIONS IN MEASURE SPACES
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Further,

•LG'u'A*n)^

'E-E0

<  fE   g U(x)d\p\ -^0     as   72^oo,

since, by (2.6) and (2.4),

|fi|(E-G)= \pL\iE'" - EJ"_A = r.   ^0    asz2-*oo.
''n

Therefore,

(2.10)

By (2.5), we have

lim     f     ^/(x, Ay")^ = 0.
»»-.oc  JE-G x

\'niE)=viE)     for  EC E[n,

r

= ̂ e)+)e-eJ{x'X,"U^

-L_rf{x>Í")dH    ̂  EÍn C E ̂  Ein+V

XiE) = viE)+ f fix, \) da.

Taking limits as 22 —> oo, we obtain, by using (2.8), (2.9) and (2.10),

Hence A is a solution of (1.1) on E.  This completes the proof.

Remark. Let E   = [i., tA, E   =0, u be the Lebesgue measure and § =

\[t0, t]:  t £ [tQ, ij]i.  For each s e [t0,'t]], let  A,. = \[tQ, s] = x(s) and

vUq, s] = h(s).  Then (1.1) takes the form

(2.11)
x(r) = hit) + J     fis, xis))ds.

Za

In this  case Theorem  1   reduces  to Caratheodory's  existence  theorem  for

the integral equation (2.11).

3.  Integral inequalities and extremal solutions.   Throughout this section,

we shall assume u to be a positive measure so that  \u\ - u,  and A(E) will

denote the set of real measures on  E Cl JR.

We first prove a fundamental integral inequality.
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Theorem 2.   Let Eel  with p.(E) < <», and let v, A1, A2 £ A(E).  Sap-

pose iTjar u. is nonatomic and A  , A    <3i p..  Let A  , A2  satisfy the following

conditions:

(i) if \l(E) < A2(E) for all E e Ë n J1Ï satisfying A C E C B  ¿/»en

/(*, A¿) < /(x, A2) for all x £ B-A;

(ii)  owe of the inequalities

\Ae)<v(E)+ f _      f(x,\l)dp
i3-1) E° (Eel nJR)

A2(E) <„(£) +   f f(x,\2)dp
JE-Er)' x

is strict;

(iii)A^(E0)<A2(E0).

T/.e22

(3.2) AX(E) < A2(E)    whenever E £ Ê n\ and E QC E[/x].

Proof.  Suppose that (3.2) is not true. Then the set ë = JE £ E C\m:

A'(E) > A2(E), E   Ç E[u]} is not empty.  We shall first show that ë  is closed.

Let E    £ ë   and p(E   , F) —• 0  as 22 —• °°.   By Lemma 1, A    and A     are

continuous on Efil.  Therefore,

(3>3) lim   Àf(E ) = A¿(F),       i = 1, 2.
n—»00

Since A!(En)> A2(En), (3.3) implies AX(F) >A2(F).  Also, since EQ   C EJ^]

we have p(E    - F) < p(E    - F) < p(E   , F).  Letting 22 —> °°, we obtain

p(En - F) = 0, i.e.  E   C F[^]. Thus Fee. Hence ë is closed.

By (iii), it is clear that  E    i ë.  Since ë  is closed, there exists an

E1 £ ë  such that 0 < p(E     Ej)= infEegp(E2, E).  Thus,

(3.4) A1(E)<A2(E),       E0ÇEÇEx[p].

Since p. is nonatomic, there exists a sequence A e E O Hi such that E C

An C Ej and p(Afí, E^ Ï 0. By (3.4), A1^) < A2(An). Taking limits as 27

•—~, we obtain A^E,) < A2(Ej).   But Ej  6 ë.  Therefore,

(3-5) A1(E.)=A2(E.).
1 x

It follows from (3.4), (3.5) and (i) that

(3-6) f{x, A1) < f(x, A2)    for each x£ E. - E,.
' x    — ' x 1 U

The inequalities (3.1) and (3.6) now yield X1 (E ) < A2(E ) which contradicts
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(3.5).  Hence the set fe  is empty.  This proves the theorem.

We shall now introduce the notion of maximal and minimal solutions.

Definition.   A maximal solution of (1.1) on E  is a solution A     of (1.1)

satisfying the inequality A(E) < A   (E), E e E Cl JR, where A  is any solution

of (1.1) on  E.  A minimal solution Am   is similarly defined by reversing the

preceding inequality.

The following theorem establishes the existence of maximal and minimal

solutions under the hypotheses of Theorem 1.

Theorem 3. Let the hypotheses of Theorem 1 be satisfied. Suppose that

if A1, A2 e A(EX) and XX(E)< \2(E) for all E e EjCi JR such that EQÇE Ç

E then f(x, A1) < f(x, A2.) for all x e E - E . Then there exist a maximal

solution and a minimal solution of (1.1) 072 some E £ JR.

Proof. Let ¡e. Î be a decreasing sequence of numbers tending to zero as

22 —> °°.   For each / = 1, 2.define

v>iE) = v{E) + e.    if EnC E
7 0 - (EeEjCiSD.

= viE) otherwise

Consider the integral equation

(3.7) A'(E) = v'iE) + /    d   fix,\')diM.
E -En x

Since v = vj on (Ex - EQ)Ci JR, it follows that vj « a on (Ex - EQ)Ci JR.

Also, the set A (E  ) defined by (2.2) is unaltered if v is replaced by any

v1 .  By Theorem 1, there exists a solution A7   of (3.7) on some E e E   n JR

for each  / = 1, 2.The only requirement for E  is to satisfy (2.3).  We

may therefore choose a single E  for the domain of definitions of all the solu-

tions A7 's.  It can be proved as in the proof of Theorem 1 that there exists a

subsequence ÍA7" Î and a function X     on E Cl JR  such that

lim   A;"(E) = AM(E),
ZZ-OO

and

lim   Íe-e  f(x,¿xn)du= J        fix, X") du,      EeEn%.

Replace ;' by j    in (3.7) and take limits as 22 -> 00.  Since v " —• v  as 22 —> °°;
' n

we obtain

»»w^Ewr^ ,(,,*;,,„   E£E-n»,
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which shows that A     is a solution of (1.1) on E.

We shall now show that A     is the desired maximal solution of (1.1) on

E. Let A be any solution of (1.1) on E.  Then

.
A(E0) < A "(EQ),

A7"(E) > v(E) + J f(x, \'n)dp,        (E£Ën 311),
E — Eq x

A(E) = v(E) +  1 /(x, A )a>.

Theorem 2 then yields

A(E) < A7"(E)    for E0 Ç E       (EeÊn ÎH).

Taking limits as « — », we obtain A(E) < AM(E) for E0ÇE(Ee Ënl).

This shows that A     is the maximal solution of (1.1) on  E.

The existence of minimal solution can similarly be proved.

Note. By applying Theroem 2, it can be shown that if j < k (so that e, <

€■) then A (E) < A7 (E) for all E £ E n%. Hence the sequence A7 itself con-

verges to A as / —' «>. As such the question of choosing a convergent sub-

sequence A "   does not in fact arise in the above proof.

As another application of Theorem 2, we prove the following comparison

theorem.

Theorem 4. Suppose that the assumptions of Theorem 3 are satisfied,

and\M is the maximal solution of (1.1) 022 E.  Let A* £ A(E), a22a" A*(E) < v(E)

+ 1e_e  /(*> O^f*. E £ Ë n%.  Then the inequality A*(EQ) < AM(E0) implies

Proof. Let A7  be any solution of (3.7). Since

lim A7(E) = AM(E),    EeÊnJR,
7—»OO

it is enough to show that

(3.8) A*(E) < A7'(E),       EeËnDïï,

Observe that A*(EQ) < A7(EQ) and A7'(E)> v(E) + /g_E  f(x, XJjdp.  The in-

equality (3.8) now follows from Theorem 2.   This completes the proof.
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