AN EQUATION $f(x)=k x$ POSSESSING NO SOLUTIONS

KAZIMIERZ GOEBEL AND WITOLD RZYMOWSKI

ABSTRACT. An example is given of a nonlinear operation $f: C[0,1]$ $\rightarrow C[0,1]$ having for any $k \in R$ no solutions of the equation $f(x)=k x$.

The main result of [1] states that if f is a continuous operator on a Banach space then $f(x)=k x$ has a solution when $|k|$ is sufficiently large. Here is a counterexample showing that the result is false.

Let $f: C[0,1] \rightarrow C[0,1]$ be defined by

$$
(f x)(t)=(\max [t,|x(t)-x(0)|])^{1 / 2}
$$

Suppose $x \in C[0,1]$ and $k \in R$ satisfy $f(x)=k x$. Obviously $x(0)=0$. Now find $0<t_{n} \rightarrow 0$ such that $\left|x\left(t_{n}\right)\right| \geq t_{n}$ or, if such a sequence does not exist, the sequence $0<s_{n} \rightarrow 0$ such that $\left|x\left(s_{n}\right)\right| \leq s_{n}$. In the first case we get $\left|x\left(t_{n}\right)\right|^{1 / 2}=|k| \cdot\left|x\left(t_{n}\right)\right|$, otherwise $s_{n}^{1 / 2}=|k| \cdot\left|x\left(s_{n}\right)\right| \leq|k| s_{n}$ which both lead to a contradiction when $n \rightarrow \infty$.

REFERENCE

1. S. Venkateswaran, The existence of a solution of $f(x)=k x$ for a continu: ous not necessarily linear operator, Proc. Amer. Math. Soc. 36 (1972), 313-314. MR 46 \#7997.

INSTYTUT MATEMATYKI, UNIWERSYTET MARII CURIE-SKLODOWSKIEJ, u. NOWOTKI 10, 20-031 LUBLIN, POLAND

Received by the editors May 21, 1974.
AMS (MOS) subject classifications (1970). Primary 47H15.

