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ABSTRACT.   Let S be a closed subset of some linear topological

space such that int ker S 40 and ker S 4 So   Let C denote the collec-

tion of all maximal convex subsets of S and, for any fixed k   >  1, let

* ={A   U ••• U A. : A    ..., A,   distinct members of <r ¡.   Then   M p 0
1 k       1 fe

and   I 1511 = ker S.

If Ç. is the collection of all maximal convex subsets of some set S, it

is easy to show that flC = ker S.   This paper provides an interesting and

perhaps surprising analogue of this well-known result.   Throughout the

paper, conv S, int S, and ker S will be used to denote the convex hull,

interior, and kernel, respectively, for the set S.

Further, we will make use of these familiar definitions: For points x, y

in a set S, we say x sees y via S if and only if the corresponding segment

[x, y] lies in S.   A subset T of S is said to be a visually independent subset

of S if and only if for every x, y in T, x 4 y, x does not see   y via S.
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Theorem 1.   Let S be a closed subset of some linear topological space

such that int ker S 4 0 and ker S 4 S.    Let £ denote the collection of all

maximal convex subsets of S and, for any fixed k > 1, let  M - {A   U   • • • U

A,: A  ,...,A,   distinct members of C\.   Then 3li 4 0 and Dm = ker S.

Proof.  It is clear that ker S Ç I I M, since ker S lies in every member of

C.   To prove the reverse inclusion, we show that if x £ S and x ¿ ker S,

there are infinitely many distinct members of C which fail to contain x.

Since x ¿ ker S, we may select p in S with [p, x] ¿ S.   Also, select z in

int ker S 4 0 .   Clearly z, p, x ate not collinear.   Because S is closed,

[p, z] C S and [p, x] ¿ S, there is some point w on [z, x) such that p sees w

via S and p sees no point of iw, x] via S.   Also, since z £ int ker S, w lies

in the open interval (z, x), and convip, z, w\ C S.   Similarly, there is a point

y on (z, p) such that x sees y via S, x sees no point of (y, p] via S, and

convix, z, yi Ç S.   Let q denote the point of intersection of (p, 227) with

(x, y).   There are two cases to consider.

Case 1.  Assume for the moment that no point of  [p, q) sees any point

of [x, q) via S.    Consider   the   family   of   segments   la, b]   supporting

convîp, q, x\ at q, with a on [p, y) and ¿> on lw, x).   Each of these segments

lies in a maximal convex subset of S not containing x, and no two segments

lie in the same maximal convex subset.   Hence there are infinitely many

maximal convex subsets of S not containing x, and x f. I lJIi, the desired

result.

Case 2.  If some point of  [p, q) sees some point of [x, q) via S, select

points p    and x    having this property, with p2 on [p, c/) and x    on [x, q).

Clearly p? 4 p and x   ¡¿ x, and we may select p2, x    so that no point of

[p, p2) sees any point of [x, x   ) via S.   Repeat an earlier argument to find

points w    on [x     q), y    on [p2, q) such that p2 sees w2\ia S and p2 sees

no point of (w  , x] via S, x    sees y2 via S and x    sees no point of (y2, p]

via S.

Without loss of generality, we assume that p? 4 y2  (for otherwise the

following argument may be suitably adapted using p, p2, x2 in place of p2,

q2, x2, respectively).   Let  q2  denote the point of intersection of  [p2, w2]

with [x2, y ].   It is clear that x sees no point on [p2, q2] U (x2, q2\   In

case no point of  [p', qA) sees any point of [x2, q2) via S, we may repeat

the argument of Case 1  to obtain an infinite collection of segments support-

ing convip2, q2, x A at q2, each of which lies in a maximal convex subset

of S not containing x, and no two of which lie in the same maximal convex

subset of S, finishing the proof.
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Otherwise, some point of  [p., <jO sees some point of [x   , q  ) via S,

and we repeat the previous argument to obtain points p,, x  , q  .   Further-

more, x cannot see x    via S.   Continuing inductively, if for some re, no point

of [p  > 1  ) sees any point of [x  , q  ) via S, then the argument of Case 1

yields the desired result.   If no such re exists, then the infinite set of points

{x : n > l!  is a visually independent subset of S, no point of which sees

x via S.   To each point x2t7 + i   we may associate a distinct maximal convex

subset of S not containing x.   Therefore, x ¿ \ \M.   This completes Case 2

and the proof of the Theorem.

To see that the full hypothesis of Theorem 1 is required, consider the

following example.

Example.  For k > 2, let x.,..., xk denote k distinct points of some

line L, with x   < x   < • • • < x^, and let y be a point not on L.   If S =

int(conv{x  , xfe, y\) u jx.x, }, then S is not closed, S has exactly k

maximal convex subsets, and the corresponding set \lm is all of S.

Similarly, if S is any collection of k > 2 distinct lines intersecting in

a common point, then int(ker S) = 0 , S has exactly k maximal convex sub-

sets, and fl3H = S.
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