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ALGEBRAS SATISFYING CONGRUENCE RELATIONS

RAYMOND COUGHLIN, MICHAEL RICH AND ARMIN THEDY

ABSTRACT.    It is shown that the classical nonassociative algebras

which have an identity element can be defined in terms of congruence re-

lations modulo the base field.

1.  Introduction. In an earlier note [2] two of the authors have shown

that if an algebra  A  with identity element   1  over a field   F  satisfies the

property that  (xy)z — xiyz) £ F ' 1  for all  x, y, z in  A, then   A  is an asso-

ciative algebra.  Here we consider the similar question for the classical

nonassociative algebras.   Recall than an alternative algebra is one which

satisfies  x y — xixy) = yx   — iyx)x = 0  for all elements  x, y and a (linear)

Jordan algebra is a commutative algebra over a field of characteristic 4 2

which satisfies  ixy)x   — xiyx ) = 0  for all elements  x, y.   In our main re-

sults we show that if  A  is an algebra with identity element   1  over a field

F such that  xy - yx £ F ' 1   and  ixy)x   — xiyx ) e F ' 1   for all elements  x

and y, then  A is a Jordan algebra.   Also if the characteristic of  F is not

3 and if xixy) — x y e F ' 1  and iyx)x - yx    £ F ' 1   for all elements  x and

y, then  A is an alternative algebra.  Similar results for strongly alternative

algebras, noncommutative Jordan algebras, and power-associative algebras

are established. '

As usual  (x, y, z)  denotes  (xy)z — xiyz)  and  [x, y]  denotes  xy — yx.

Wherever convenient we will write  a = 0 mod  F instead of  a £ F • 1.   Also,

throughout we shall use the term "algebra" to mean a not necessarily as-

sociative algebra with identity element   1  over a field   F.

Our results depend on the Teichmüller or  5-identity:

x(y, z, w) + ix, y, z)w = (xy, z, w) - ix, yz, w) + (x, y, zw)

which holds in any nonassociative ring.  We also rely heavily on the ability

to linearize identities [3], [5] and on the linear independence of various

elements of our algebra.  Thus, we restrict our attention to algebras over fields.
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2.  The alternative case.  Recall that an algebra is called flexible if

(x, y, x)= 0  for all elements  x, y.

Lemma 1.  // A  is an algebra in which (x, x , x) = 0 mod F for all x,

y in A, then 2(x, x, x) = 0 for all x in A.

Proof.  The result is trivially true if x £ F ' 1.   Assume now that  x ft

F ' 1. In (x, x , x) = 0 mod F, replace x by x + 1 to yield  2(x, x, x) = 0

mod F. Next, linearize the relation 2(x, x, x) = 0 mod F to get 2(x , x, x)

+ 2(x, x , x) + 2(x, x, x ) = 0 mod F.  Thus   2(x , x, x) + 2(x, x, x ) = 0 mod

F.  By the  5-identity

x(x, x, x) + (x,  x, x)x = (x , x, x) - (x, x  , x) + (x, X, X  ).

Since  2(x, x, x) £ F ' 1  we have Ax(x, x, x) £ F ' 1.  But x ¿ F ' 1.  There-

fore 4(x, x, x) = 0 and so  2(x, x, x) = 0.

Lemma 2. // A is a?? algebra in which (x, x, y) = (y, x, x) = 0 mod F

for all x, y in  A, then A  is flexible.

Proof.   Expand  (x + y, x + y, x) £ F ' 1  to get (x, y, x) £ F ' 1.  Thus

Lemma 1 applies.

By the  5-identity we have

(1) (x2, x, y) - (x, x2, y) + (x, x, xy) - (x, x, x)y = x(x, x, y)

and

(2) iy, x, x2) - iy, x2, x) + (yx, x, x) - y(x, x, x) = (y, x, x)x.

Now add equations (1) and (2).  Since (x, y, x) e F ' 1  and  2(x, x, x) =

0  it follows that the left side of the resulting equation is in  F ' 1.  There-

fore  x(x, x, y) + (y, x, x)x £ F ' ICt F ' x.   Thus we have

(3) (x, x, y) + (y, x, x) = 0.

From the  5-identity again, we get

(4) (x  , y, x) = x(x, y, x) + (x, x, y)x + (x, xy, x) - (x, x, yx).

Therefore (x2, y, x) e F ' 1 + F ' x.   This gives (x , x, y) e F • 1 +

F • x and (x, x , y) £ F ' 1 + F * x.   From (1) we can now conclude that

(x, x, x)y £ F ' 1 + F " x for all  x, y in  A.   Thus (x, x, x) = 0  for all  x in

A.  For if dim A > 2, an element y  can be chosen such that y 4 E * 1 +

F "x whereas if dim A < 2, it is automatic that  A is associative.
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Now if F contains more than two elements, we can linearize (x, x, x)

= 0  to obtain (x, x, y) + (y, x, x) + (x, y, x) = 0  and from (3) it follows that

A is flexible.  If  F  contains only two elements, we imbed  F in a larger

field  F  and consider the scalar extension A = A ®~ F.   Since (x, x, y) 6

F * 1  and (y, x, x) £ F ' 1   for all  x, y in  F, it is immediate that (x, x, y")

£ F • 1  for all x, y~ in  A.  Consequently  A is flexible and thus  A is flex-

ible also.     □

San Soucie [6] has defined a strongly right alternative algebra to be a

right alternative algebra ((y, x, x) = 0) satisfying the identity ((xy)z)y =

x((yz)y).  Thedy [9] has shown that for a right alternative algebra this is

2
equivalent to (y, x, x  ) = 0  in all extensions.  We now prove

Lemma 3.  // A  is an algebra in which (y, x, x) = (y, x, x ) = 0 mod F

for all x, y   in  A, then (y, x, x) = (y, x, x  ) = 0  for all x, y  in  A.

Proof.   From the  5-identity we have y(x, x, x) + (y, x, x)x = (yx, x, x) -

(y, x , x) + (y, x, x  ) and the right side is in   F * 1  by hypothesis.  There-

fore we have

(5) y(x, x, x) + (y, x, x)x = 0 mod F •  1     for all x, y  in  A.

Now we may assume that there exists a y  in  A  which is linearly inde-

pendent of  1  and .x for otherwise  A  would be associative.  Thus (x, x, x)

= 0  for all  x in  A.   Consequently (y, x, x)x £ F ' 1 Cl F " x for all  y in  A

from which we conclude that (y, x, x) = 0.

Irrespective of the number of elements in  F we may linearize the iden-

tity (y, x , x) = 0 mod F to get  2(y, x , x) = 0 mod F.   Therefore the right

side of

y(x, x2, x) + (y, x, x2)x = (yx, x2, x) - (y, x3, x) + (y, x, x3)

is in  F • 1  so that we have  y(x, x , x) + (y, x, x )x = 0 mod F  for all  x, y

in  A and by the same argument as before we arrive at (y, x, x  ) = 0.

We remark that if  F has at least three elements and (y, x, x) = (y, x, x )

= 0 mod F, then the algebra is strongly right alternative.   For by the lemma,

(y, x, x)= (y, x, x ) = 0  for all  x, y in  A, and since  F has at least three

elements, these identities hold in all extensions.

We are now able to prove our first main result.

Theorem 1.   // A is an algebra in which  (x, x, y) = (y, x, x) = 0 mod F

for all x, y in  F and if the characteristic of F 4 3, then  A  is an alterna-

tive algebra.
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Proof.   From the  5-identity and Lemma 2 we have  x(y, x, x) = (x, y, x )

F and  x

enees to get

mod F  and  x(x, x, y) = (x , x, y) — (x, x , y) mod F.   We add these congru

u \      / \i      it 2\        j  nxliy, x, x) + ix, x, y)\ = 3U, y, x ) mod h

or, again by Lemma 2, 3(x, y, x ) = 0  mod F.  Since characteristic  F 4 3,

we have  (x, y, x ) = 0 mod F.   Then from Lemma 3 it follows that (y, x, x)

= 0.  Linearization of the flexible law gives  (x, x, y) a 0.   Therefore  A is

alternative.

3. The Jordan case.  Recall that a ring R is called noncommutative

Jordan if it is flexible and satisfies the Jordan law (x, y, x ) = 0.  If R  is

a ring in which to each a £ R there is a unique  b e R  such that 2b = a, we

can define the attached ring  R    to be the same additive group as   R  with

multiplication in  R     given by x ' y = l/2(xy + yx)  where  xy  denotes the

multiplication in  R.   In particular this applies to an algebra over a field of

characteristic 4 2.

Theorem 2,   // A  is a22 algebra over a field F of characteristic 4 2 in

which  [x, y] = (x, y, x ) = 0 mod F for all x, y  in  A, then  A  is a Jordan

algebra.

Proof.  Since  A  contains an identity element  1, linearization of

(x, y, x ) = 0 mod F yields  (x, y, x) = 0 mod F [8].  On the other hand

[xy, x] = x[y, x] + (x, y, x) holds in any ring.  Therefore we get  x[y, x] e

F ' 1 n F " x  so that we can conclude that [x, y] = 0  and  A  is commutative.

Hence  A is flexible and

(") (x, y, z) + (y, z, x) + (z, x, y) = 0    for all  x, y, z  in  A.

Thus  (x , y , x) = - (y , x, x  ) - (x, x , y ).  Linearization of the hy-

pothesis gives  (x , y, z) + 2(xz, y, x) = 0 mod F  and thus the right side of

the last equation is congruent to  2(x y, x, y) + 2(y, x., xy) mod F.   Thus we

have

(7)     (x2, y2, x) = 2(x2y, x, y) + 2(y, x2, xy) mod F    for all  x, y  in  A.

Now by (6) again we have

2(x2y, x, y) + 2(y, x2, xy) = 2(x2y, x, y) - 2(x2, yx, y) + 2(x2, y, xy).

Therefore, we have
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(8) ^*2, y2' x^ s 2(x2y, x, y) - 2(x  , yx, y) + 2(x  , y, xy) mod F

for all x, y  in A.

Thus, by the  5-identity and flexibility we arrive at: (x , y  , x) =

2(x , y, x)y  mod F.   Hence  2(x , y, x)y e F • 1 Cl F • y  for all  x, y  in  A.   It

follows that (x , y, x) = 0  and  A  is a Jordan algebra.

An algebra  R  is called Jordan admissible if  R     is a Jordan algebra.

Corollary 1.  // A  is an algebra over a field F of characteristic 4 2

in which (x, y, x  ) = 0  mod F for all x, y  in  A, then  A is a Jordan admis-

sible algebra.

Prool.  Again it follows from the hypothesis that (x, y, x) = 0 mod F.

Therefore Lemma 1 yields (x, x, x) = 0  and its linearized version (x, x, y)

+ (x, y, x) + (y, x, x) = 0.  Now it is straightforward that

4[(x • y) •  x2 - x •  (y • x2)] = (x,  y, x2) - (x2, y, x) + (y,  x, x2)

- (x , x, y) + (x, x2, y) - (y, x2, x).

Hence

4[(x • y) • x    - x • (y • x¿)J = 2(y, x, x¿) - 2(y, x% x) mod F

(since (x, y, x) e  F •  l)

=. -2(yx, x, x) + 2(y, x, x)x mod F    (5-identity)

= 2(x, x, yx) + 2(y, x, x)x mod F

= 2x(x, y, x) + 2(x, x, y)x + 2(y, x, x)x mod F

(5-identity)

= 2[(x, y, x) + (x, x, y) + (y, x, x)]x mod F

= 0

since (x, y, x) + (x, x, y) + (y, x, x) = 0.  Therefore (x'y)'x    - x - (y • x )

= 0 mod F.  Hence A     satisfies the conditions of Theorem 2 and is a Jor-

dan algebra.  Therefore  A is Jordan admissible.

Since a flexible, Jordan admissible algebra is noncommutative Jordan

[7], the following corollary is immediate.

Corollary 2. // A is a flexible algebra over a field F of characteris-

tic 4 2 2« which (x, y, x ) = 0 mod F for all x, y in A, then A is a non-

commutative Jordan algebra.

Examples.   1.   The following example shows that the result of Corollary
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2 is not true if the algebra is not assumed to be flexible.  Let A be the

4-dimensional algebra over a field  F of characteristic 4 2  with basis

1, a, b, c.  Define multiplication by  a    = b   = c   = 1, ab = — ba = c, and

all other products zero.   Then, for all  x, y in  A  one notes that (x, y, x) =

(x , y, x) = 0  mod F.   However (a, b, c) + (c, b, a) = 2 4 0.  Therefore  A

is not flexible.  In addition it is easy to see that A is a simple algebra.

2. There are many examples of simple, power-associative algebras in

which [x, y] = 0 mod F but which are not commutative. See, for example,

Example 2 of [4] and the class of algebras constructed in [1].

3. The following is an example of an algebra  A  with an idempotent  e

in the center  C of A  such that (x, y, z) e F • e C C  for all  x, y, z in  A,

but  A is not even power-associative.  Let  A  be the  4-dimensional algebra

with basis  e, x, y, z  and multiplication given by: xy = yx = z, e   = zx =

xz = yz = zy = e  and all other products zero.  Thus, the results of Theorem

1 would be false if the congruences were assumed modulo the center.

4. The power-associative case.  In an arbitrary algebra   A powers of

elements  x in  A  are defined inductively by  x" = xx"~   .   A  is called power-

associative if xmxn = xm  "  fot all  x in  A and for all positive integers

m, 22.  This is easily equivalent to (x , xq, xT) - 0  for all   x, p,  q, r.

Theorem 3.  // A  is an algebra in which (xp, xq, xT) = 0 mod F for all

x 222  A  and all positive integers p, q, r, then A  is a power-associative

algebra.

Proof.  Let  x be in  A.   Then by the   5-identity we have

x(x, x, x2) + (x,  x, x)x2 = (x2, X, x2) - (x, X2, X2) + (x, X, X3).

By hypothesis the right side is in  F ' 1.  Thus  x(x, x, x  ) + (x, x, x)x    = 0

mod F.   It follows that either (x, x, x) = 0  or x    e F • 1 + F ' x.   But the

latter also implies that (x, x, x) = 0.   Assume inductively that  xmx" =

xm+" fot 3 <m + n<N.  Now let 222 + 72 = N + L If m = 1, then xmxn =

xm  "  by definition.  If 222 > 1, then by the induction hypothesis we have

(9) x^x" = (xxm-1)xn = (x, x™'1, x") + x'V+1.

Thus, if (x, xm~ , x") = 0 we are done. By the 5-identity we have

x(xm_1, x", x2) + (x, xm~l, x")x2=0 mod F. Now if (x, xra_1, xn) 4 0,

then  x2 £ F ' 1 + F • x which implies that  x" e F • 1 + F • x and  xm_     e .

F • 1 + F • x.   Thus, (x, xm_1, x") = 0 (since (x, x, x) = 0).  Therefore

xmx" = xN + 1 = xm+n  and  A  is power-associative.
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