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THE RADIUS OF a-CONVEXITY FOR THE CLASS OF

STARLIKE UNIVALENT FUNCTIONS, a-REAL

PETRU T. MOCANU AND MAXWELL O. READEl

ABSTRACT. We use a result due to Gutljanskii to obtain the radius

of a-convexity for the class S   of starlike univalent functions for real   a.

1.  Introduction.   Let F  denote a nonempty collection of functions

(1) fiz) = z + a2z2 + ■■•

each of which is univalent in the unit disc A = [z \\z\ < 1]  and let

;(a,/W>.4-a,^4^)),

where a  is a given real number.  Then the real number

(3) RaiF) = supiP|/(a, /(*)) > 0, |*| <R, f £ F]

is called the radius of a-convexity oí F.

Let S be the class of functions (1) which are starlike in A, i.e. which

verify the condition

(4) Re ízf'íz)/fíz)) > 0,       z £ A.

In this paper we obtain R aÍS )  tot all real a.  This result, announced in [4],

improves an earlier one obtained by S. S. Miller and us [2].  The three of us

found the value of R aÍS )  tot a > 0 by using well-known elementary esti-

mates for the functionals  Re piz)   and Reízp'íz)/píz))  tot analytic functions

piz) = 1 + • • •  whose real part is positive in A.   Indeed, it is Gutljan-

skil's   complicated   and   sophisticated   relations   between   Re piz)   and

Re[p(z) + zp'iz)/piz)] [l] that enable us to obtain a complete solution to

the problem of determining the radius RaÍS )  tot all real  a.
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Here is Gutljanskii's result, as he stated it, along with a diagram that

will help in following our application of this result.

Lemma (Gutljanskii [l]).   TAe domain of variability D  of the functional

iif) = Re ízfíz)/fíz)) + z Re(l + izf'iz)/fiz)))

within the class S ,  for fixed z £ A,   is bounded by two curves V    and V

as shown in the diagram below.

y

ÍRy,0)

/ Mf2,0) ÍRy,0)
% o)

r    consists of three arcs T,, V2, V,, where

r|:y = <D1(x) =  V2x[3 - i2ax- l)"1],       Ry<x<Çy,

uniquewhere  a = ( 1 + r2)/(l - r2),   \z\ = r,   Rj s il- r)/í 1 + r)  and çfj   is the

positive root of the equation Í2ax - 1)  '     = x;

■i         y„- (2zzx - l)yn + x
r + : y = $.U) S| X - "-I-Í1-,

?-y2o

for <f j < x < cf2 = [ia    + 3)    -a],  where yQ  is the unique positive root of

y   + Í 2ax — l)y - 2x = 0; and

F + : y = î>3(x) = x- x'1 + a,        rf2 < x < Ry = (l + r)/(l - r).

The arc V     is a line segment.

r   : y = 2x - a, Ry  <x < Ry.
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It is easy to show that Vy   and T,   are concave curves, while T2  is

convex, relative to the horizontal axis.

2.  Main result.

Theorem.   TAe radius of a-convexity of the class S    of all starlike

functions is given by

R-(i*)-

(1 + a) - [(1 + a)2 - l]V2, a>0,

2-(-a)K"|K

2 + (-a)1/2J

(l + a)-[(l + a)2- 1]*, a<-3.

-3 < a < 0,

Proof.   For fixed  a, z,  we consider the line

L   : (l - a)x + ay = 0    or    y =-x.
a a

Now it f £ S    and if z  is fixed, then /(a, /(z)) s (l- a)x + ay,  where

x = Re(z/'(z)//(z)),  y = Re(l + z/"(z)//'(z))   for some (x, y) e D.   Hence

the problem of finding RaÍS )  is replaced by the problem of finding when

La is a support line from below (above) of the domain of variability D foi a

positive (negative).

(i) Suppose  a > 0.   In this case we want D  to be supported from below

by La. Since the slope of La is never greater than one, and since Y    has

slope two, it follows that La supports D   when  La passes through ÍR y,

c&yÍRy)),   that is, when the equation

(5) H-a)l-^L+al-Ar+rl = 0

l + T l_r2

holds.   From (5) we obtain

Pad*) = (l + a)-[(l+a)2- l]YA

a result obtained earlier by S. S. Miller and us [3].

(ii) Let  a < 0.  In this case we want La to be a line of support for D

from above, that is,  D  lies below  La except for the points of T    that lie

on La.  It is (geometrically) clear that  La is such a support line if and

only if La passes through ÍR y, $j(Rj)),   or La is tangent to Ty,  or La

is tangent to l\,  or La passes through ÍR y, <f)ARy)).   Hete we have used

the fact that Y2   "opens up" so that La cannot be a support line for D

and also be tangent to T, for some x,  zfy < x < ç2,
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(ii-a) If La passes through ÍR y, $ yÍR y)),  then (l - a)Ry + cwÊ^Rj) = 0,

and hence   1 - 2(1+ a)r + r   = 0.  But this last implies that r + \/r = 2(1 + a),

which (for a < 0)  is not compatible with the inequality r + \/r > 2 for all

r > 0.  Hence  La cannot pass through  ÍR y, <¡>yÍRy)).

(ii—b).  Suppose  a < - 1.  We shall show that when L a is a support line

(from above) for D,  then either La passes through (R y, <D,(ßj))   and/or

La is tangent to T,.

First,  since  T2   "opens up",  La cannot intersect T2  and still be  a

support line for D.  Second, the slope of La,   1 - l/a  satisfies the inequal-

ities   1 < 1 — l/a < 2  in this case.  Third, since the slope function $j(x)  of

T.   is a decreasing function on the interval P, < x <  ç, ,  the minimum of

í>j(x)  on that interval is $j(<fj).   Elementary calculations show ^(çf;) =

VÄ3+ cj~4' ']; here we have used the relation (2afj - l)2'3 = cfj.  But for

0 < cf j < 1 we see that $'[(£y) > 2,  and hence <&[(£])  dominates the slope

of La.  Therefore La,  if it is a supporting line of D, cannot be tangent to

We now know that if La is a supporting line of D,  then La must pass

through the point ÍR y, $3(Pj))  and/or be tangent to T*.

Suppose La is tangent to T,   and lies above D.   Then there exists x2

such that (a - l)/a = 1 + 1/x2 = <£'3(x2),   which shows x2 = (-a)1'2. Since

r?  is concave, we have <f 2 < x2 < R y = ( 1 + r)/( 1 - r).  Since D  lies below

La and since  L a is tangent to T,   at (x2, $,(x2)),   we conclude that for

each f£S*,  and for each fixed z,  we have

/(a, fiz)) > (1 - a)x2 + a$3(x2)

(6)
> (j _ a)(-a)M + a[(-a)l/i - (-a)"H + zz] = 0,

where zz = ( 1 + r )/( 1 - r ).   From (6) we solve for r to obtain

r2 = [(2-(-a)^/(2+(-a)^)]^,

1/2      -
which  must satisfy the necessary condition   x2 = (—a)  '    < Ry =

( 1 + r2)/( 1 - r2).   But this last holds only when — 3 < ex.  Hence we have

found R aÍS ) = r2,  but only for the range - 3 < a < 1.

Now we have the remaining case, a study of the supporting line for the

case a<-3.  In this case La passes through the point iRy,($ARy)).

Hence for each f £ S    and for each fixed z,  we have

1 + r\ 1 + 4r + z-2
/(a, fiz)) >íl-a)Ry + aí>}(R y) > (l - a)i -— j + a—- = 0,
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which yields the solution

.(1 + a) - [(1 + a)2 - l]5ri

that is, R aiS*) = r3  for the case a < -3.

(iii) Suppose — 1 < a < 0.  If La is tangent to Vy   at some point

(xj, $j(xj)),  Ri < Xy <¿¡y,  then

*'.(*.) = -
11 o

1_1_1 = a_-_

3(2ax1-l)2J        a.3(2zzx.-l)2 «

must hold, that is

2axx = 1 + [-(a+ 2)/a]^.

Since (xj, $j(xj))  lies on La,  we have

^i-iM] (1 - a)x, + a$.(x ) = 0

must hold.   But for - 1 < a < 0,   this last relation cannot hold.  Hence if La

is a support line for D, then La is not tangent to r¡.

If La is a support line for D   and if La passes through ÍR y, fJ^Pj)),

then (5) holds.  But the left-hand member of (5) is always positive for - 1 <

a < 0,  for 0 < r < 1.  Hence if L a supports D  from above, for - 1 < a < 0,

then La either passes through ÍR y, <$>A.Ry))  and/or is tangent to V,.  But

we have shown that a < - 3  is a necessary condition for La to support D

and to pass through ÍR y, $,(/? j)).   We conclude that in the present case,

- 1 < a < 0,  when L a is a line of support for D,  then La is tangent to r\.

This leads to R aiS ) = r2   as in (ii-b) above.

Since it is  (geometrically) clear that for each real a,  fot each fixed z,

there is the appropriate supporting La,  out proof is now complete.

3. Application.  Let S  denote the set of all functions (1) that are uni-

valent in A,   and let S  denote the set of all functions of the form

(?) cpio^i/fii/O = C+b0 + by/<;+...

analytic, univalent and nonvanishing for |4| >  1.   Since it is now well-known

that the set

%a = 1/1/e S, /(a, /(z))>0, \z\ <l]

is a subset of the set of starlike S   (= JÍÍA [3],  it follows that the set



400 P. T. MOCANU AND M. O. RE ADE

Sa = {<p|0e 1, Jía, cpíO)>0, \C\> l]

is a subset of the subset S    of starlike elements of X,   and 2    = Sn.  More-

over, a calculation shows that if the relation (7) between f £ S  and </> £ 2

is written as </> = T(/),   then T(S) = 2  and

(8) ]ía, fiz)) = JÍ-a, Tif))

so that 2_a=T(5a).

If 0  is a nonempty subset of X,  then the real number

Pa(4>) = inf [p|/(a, 0(0) > 0, ci £ <D, |£| >p]

can be called the radius of a-convexity of 0.  If we define F  such that

í> s Tip),  then the following formulas follow from (8):

RaiF) = 1/P_am,      Pa(<D) = l/R.a(F).

In particular P^*) = U/R_yiS*)) = yft. But /(l, 0(0) = Re(l + CtfiO/AO),
so that the constant Pj(2 )   is the radius of convexity of the set £ .   Thus

we have recaptured a well-known result.
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