THE RADIUS OF α-CONVEXITY FOR THE CLASS OF STARLIKE UNIVALENT FUNCTIONS, $\alpha-$ REAL

PETRU T. MOCANU AND MAXWELL O. READE ${ }^{1}$

ABSTRACT. We use a result due to Gutljanskiir to obtain the radius of a-convexity for the class S^{*} of starlike univalent functions for real a.

1. Introduction. Let F denote a nonempty collection of functions

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+\cdots \tag{1}
\end{equation*}
$$

each of which is univalent in the unit disc $\Delta \equiv\{z||z|<1\}$ and let

$$
\begin{equation*}
J(\alpha, f(z)) \equiv \operatorname{Re}\left\{(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\} \tag{2}
\end{equation*}
$$

where α is a given real number. Then the real number

$$
\begin{equation*}
R_{\alpha}(F) \equiv \sup \{R|J(\alpha, f(z))>0,|z|<R, f \in F\} \tag{3}
\end{equation*}
$$

is called the radius of a-convexity of F.
Let S^{*} be the class of functions (1) which are starlike in Δ, i.e. which verify the condition

$$
\begin{equation*}
\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>0, \quad z \in \Delta \tag{4}
\end{equation*}
$$

In this paper we obtain $R_{a}\left(S^{*}\right)$ for all real a. This result, announced in [4], improves an earlier one obtained by S. S. Miller and us [2]. The three of us found the value of $R_{a}\left(S^{*}\right)$ for $\alpha \geq 0$ by using well-known elementary estimates for the functionals $\operatorname{Re} p(z)$ and $\operatorname{Re}\left(z p^{\prime}(z) / p(z)\right.$) for analytic functions $p(z)=1+\cdots$ whose real part is positive in Δ. Indeed, it is Gutljanskii's complicated and sophisticated relations between $\operatorname{Re} p(z)$ and $\operatorname{Re}\left[p(z)+z p^{\prime}(z) / p(z)\right][1]$ that enable us to obtain a complete solution to the problem of determining the radius $R_{\alpha}\left(S^{*}\right)$ for all real α.

[^0]Here is Gutljanskii's result, as he stated it, along with a diagram that will help in following our application of this result.

Lemma (Gutljanskii [1]). The domain of variability D of the functional

$$
g(f) \equiv \operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)+i \operatorname{Re}\left(1+\left(z f^{\prime \prime \prime}(z) / f^{\prime}(z)\right)\right)
$$

within the class S^{*}, for fixed $z \in \Delta$, is bounded by two curves Γ^{+}and Γ^{-} as shown in the diagram below.

Γ^{+}consists of three arcs $\Gamma_{1}^{+}, \Gamma_{2}^{+}, \Gamma_{3}^{+}$, where

$$
\Gamma_{1}^{+}: y=\Phi_{1}(x) \equiv 1 / 2 x\left[3-(2 a x-1)^{-1}\right], \quad R_{1} \leq x \leq \xi_{1},
$$

where $a \equiv\left(1+r^{2}\right) /\left(1-r^{2}\right),|z| \equiv r, R_{1} \equiv(1-r) /(1+r)$ and ξ_{1} is the unique positive root of the equation $(2 a x-1)^{3 / 2}=x$;

$$
\Gamma_{2}^{+}: y=\Phi_{2}(x) \equiv \frac{3}{2} x-\frac{y_{0}^{3}-(2 a x-1) y_{0}+x}{2 y_{0}^{2}}
$$

for $\xi_{1} \leq x \leq \xi_{2} \equiv\left[\left(a^{2}+3\right)^{1 / 2}-a\right]$, where y_{0} is the unique positive root of $y^{3}+(2 a x-1) y-2 x=0 ;$ and

$$
\Gamma_{3}^{+}: y=\Phi_{3}(x) \equiv x-x^{-1}+a, \quad \xi_{2} \leq x \leq \bar{R}_{1} \equiv(1+r) /(1-r)
$$

The arc Γ^{-}is a line segment.

$$
\Gamma^{-}: y=2 x-a, \quad R_{1} \leq x \leq \bar{R}_{1}
$$

It is easy to show that Γ_{1}^{+}and Γ_{3}^{+}are concave curves, while Γ_{2}^{+}is convex, relative to the horizontal axis.
2. Main result.

Theorem. The radius of a-convexity of the class S^{*} of all starlike functions is given by

$$
R_{\alpha}\left(S^{*}\right)= \begin{cases}(1+\alpha)-\left[(1+\alpha)^{2}-1\right]^{1 / 2}, & a \geq 0 \\ {\left[\frac{2-(-\alpha)^{1 / 2}}{2+(-\alpha)^{1 / 2}}\right]^{1 / 2},} & -3 \leq \alpha \leq 0 \\ -(1+\alpha)-\left[(1+\alpha)^{2}-1\right]^{1 / 2}, & \alpha \leq-3\end{cases}
$$

Proof. For fixed α, z, we consider the line

$$
L_{a}:(1-\alpha) x+a y=0 \quad \text { or } \quad y=\frac{a-1}{a} x
$$

Now if $f \in S^{*}$ and if z is fixed, then $J(\alpha, f(z)) \equiv(1-\alpha) x+\alpha y$, where $x \equiv \operatorname{Re}\left(z f^{\prime}(z) / f(z)\right), y \equiv \operatorname{Re}\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right)$ for some $(x, y) \in D$. Hence the problem of finding $R_{\alpha}\left(S^{*}\right)$ is replaced by the problem of finding when L_{α} is a support line from below (above) of the domain of variability D for α positive (negative).
(i) Suppose $a>0$. In this case we want D to be supported from below by L_{a}. Since the slope of L_{a} is never greater than one, and since Γ^{-}has slope two, it follows that L_{a} supports D when L_{a} passes through (R_{1}, $\Phi_{1}\left(R_{1}\right)$), that is, when the equation

$$
\begin{equation*}
(1-\alpha) \frac{1-r}{1+r}+\alpha \frac{1-4 r+r^{2}}{1-r^{2}}=0 \tag{5}
\end{equation*}
$$

holds. From (5) we obtain

$$
R_{\alpha}\left(S^{*}\right)=(1+\alpha)-\left[(1+\alpha)^{2}-1\right]^{1 / 2}
$$

a result obtained earlier by S. S. Miller and us [3].
(ii) Let $a<0$. In this case we want L_{a} to be a line of support for D from above, that is, D lies below L_{a} except for the points of Γ^{+}that lie on L_{a}. It is (geometrically) clear that L_{a} is such a support line if and only if L_{a} passes through $\left(R_{1}, \Phi_{1}\left(R_{1}\right)\right)$, or L_{α} is tangent to Γ_{1}^{+}, or L_{a} is tangent to Γ_{3}^{+}, or L_{a} passes through $\left(\bar{R}_{1}, \Phi_{3}\left(R_{1}\right)\right.$). Here we have used the fact that Γ_{2}^{+}"opens up" so that L_{a} cannot be a support line for D and also be tangent to Γ_{2}^{+}for some $\bar{x}, \xi_{1}<\bar{x}<\xi_{2}$,
(ii-a) If L_{a} passes through $\left(R_{1}, \Phi_{1}\left(R_{1}\right)\right)$, then $(1-\alpha) R_{1}+\alpha \Phi_{1}\left(R_{1}\right)=0$, and hence $1-2(1+\alpha) r+r^{2}=0$. But this last implies that $r+1 / r=2(1+\alpha)$, which (for $\alpha<0$) is not compatible with the inequality $r+1 / r \geq 2$ for all $r>0$. Hence L_{a} cannot pass through $\left(R_{1}, \Phi_{1}\left(R_{1}\right)\right)$.
(ii-b). Suppose $a \leq-1$. We shall show that when L_{a} is a support line (from above) for D, then either L_{a} passes through $\left(\bar{R}_{1}, \Phi_{3}\left(\bar{R}_{1}\right)\right)$ and/or L_{a} is tangent to Γ_{3}^{+}.

First, since Γ_{2}^{+}"opens up", L_{a} cannot intersect Γ_{2}^{+}and still be a support line for D. Second, the slope of $L_{\alpha}, 1-1 / \alpha$ satisfies the inequalities $1 \leq 1-1 / \alpha \leq 2$ in this case. Third, since the slope function $\Phi_{1}^{\prime}(x)$ of Γ_{1}^{+}is a decreasing function on the interval $R_{1} \leq x \leq \xi_{1}$, the minimum of $\Phi_{1}^{\prime}(x)$ on that interval is $\Phi_{1}^{\prime}\left(\xi_{1}\right)$. Elementary calculations show $\Phi_{1}^{\prime}\left(\xi_{1}\right)=$ $1 / 2\left[3+\xi_{1}^{-4 / 3}\right]$; here we have used the relation $\left(2 \alpha \xi_{1}-1\right)^{2 / 3}=\xi_{1}$. But for $0<\xi_{1}<1$ we see that $\Phi_{1}^{\prime}\left(\xi_{1}\right)>2$, and hence $\Phi_{1}^{\prime}\left(\xi_{1}\right)$ dominates the slope of L_{α}. Therefore L_{a}, if it is a supporting line of D, cannot be tangent to Γ_{1}^{+}.

We now know that if L_{a} is a supporting line of D, then L_{a} must pass through the point $\left(\bar{R}_{1}, \Phi_{3}\left(\bar{R}_{1}\right)\right)$ and/or be tangent to Γ_{3}^{+}.

Suppose L_{a} is tangent to Γ_{3}^{+}and lies above D. Then there exists x_{2} such that $(\alpha-1) / \alpha=1+1 / x_{2}^{2}=\Phi_{3}^{\prime}\left(x_{2}\right)$, which shows $x_{2}=(-\alpha)^{1 / 2}$. Since Γ_{3}^{+}is concave, we have $\xi_{2} \leq x_{2} \leq \bar{R}_{1}=(1+r) /(1-r)$. Since D lies below L_{a} and since L_{a} is tangent to Γ_{3}^{+}at $\left(x_{2}, \Phi_{3}\left(x_{2}\right)\right)$, we conclude that for each $f \in S^{*}$, and for each fixed z, we have

$$
\begin{align*}
J(\alpha, f(z)) & \geq(1-\alpha) x_{2}+\alpha \Phi_{3}\left(x_{2}\right) \\
& \geq(1-\alpha)(-\alpha)^{1 / 2}+\alpha\left[(-\alpha)^{1 / 2}-(-\alpha)^{-1 / 2}+a\right]=0, \tag{6}
\end{align*}
$$

where $a=\left(1+r^{2}\right) /\left(1-r^{2}\right)$. From (6) we solve for r to obtain

$$
r_{2}=\left[\left(2-(-\alpha)^{1 / 2}\right) /\left(2+(-\alpha)^{1 / 2}\right)\right]^{1 / 2},
$$

which must satisfy the necessary condition $x_{2}=(-\alpha)^{1 / 2} \leq \bar{R}_{1}=$ $\left(1+r_{2}\right) /\left(1-r_{2}\right)$. But this last holds only when $-3 \leq \alpha$. Hence we have found $R_{a}\left(S^{*}\right)=r_{2}$, but only for the range $-3 \leq \alpha \leq 1$.

Now we have the remaining case, a study of the supporting line for the case $a<-3$. In this case L_{a} passes through the point $\left(\bar{R}_{1}, \Phi_{3}\left(\bar{R}_{1}\right)\right)$. Hence for each $f \in S^{*}$ and for each fixed z, we have

$$
J(\alpha, f(z)) \geq(1-\alpha) \bar{R}_{1}+\alpha \Phi_{3}\left(\bar{R}_{1}\right) \geq(1-\alpha)\left(\frac{1+r}{1-r}\right)+\alpha \frac{1+4 r+r^{2}}{1-r^{2}}=0
$$

which yields the solution

$$
r_{3}=-(1+\alpha)-\left[(1+\alpha)^{2}-1\right]^{1 / 2}
$$

that is, $R_{a}\left(S^{*}\right)=r_{3}$ for the case $a<-3$.
(iii) Suppose $-1 \leq \alpha<0$. If L_{α} is tangent to Γ_{1}^{+}at some point $\left(x_{1}, \Phi_{1}\left(x_{1}\right)\right), R_{1} \leq x_{1} \leq \xi_{1}$, then

$$
\Phi_{1}^{\prime}\left(x_{1}\right)=\frac{3}{2}\left[1+\frac{1}{3} \frac{1}{\left(2 a x_{1}-1\right)^{2}}\right]=\frac{a-1}{a}
$$

must hold, that is

$$
2 a x_{1}=1+[-(\alpha+2) / \alpha]^{1 / 2} .
$$

Since $\left(x_{1}, \Phi_{1}\left(x_{1}\right)\right)$ lies on L_{α}, we have

$$
x_{1}\left[1+\frac{\alpha}{2}-\frac{\alpha}{2}\left(-\frac{2+\alpha}{\alpha}\right)^{1 / 2}\right]=(1-\alpha) x_{1}+\alpha \Phi_{1}\left(x_{1}\right)=0
$$

must hold. But for $-1 \leq a<0$, this last relation cannot hold. Hence if L_{a} is a support line for D, then L_{a} is not tangent to Γ_{1}^{+}.

If L_{a} is a support line for D and if L_{a} passes through $\left(R_{1}, \Phi_{1}\left(R_{1}\right)\right)$, then (5) holds. But the left-hand member of (5) is always positive for $-1 \leq$ $\alpha<0$, for $0 \leq r<1$. Hence if L_{a} supports D from above, for $-1 \leq a<0$, then L_{a} either passes through $\left(\bar{R}_{1}, \Phi_{3}\left(\bar{R}_{1}\right)\right)$ and/or is tangent to Γ_{3}^{+}. But we have shown that $\alpha \leq-3$ is a necessary condition for L_{a} to support D and to pass through $\left(\bar{R}_{1}, \Phi_{3}\left(\bar{R}_{1}\right)\right)$. We conclude that in the present case, $-1 \leq a<0$, when L_{α} is a line of support for D, then L_{a} is tangent to Γ_{3}^{+}. This leads to $R_{a}\left(S^{*}\right)=r_{2}$ as in (ii-b) above.

Since it is (geometrically) clear that for each real α, for each fixed z, there is the appropriate supporting L_{α}, out proof is now complete.
3. Application. Let S denote the set of all functions (1) that are univalent in Δ, and let Σ denote the set of all functions of the form

$$
\begin{equation*}
\phi(\zeta) \equiv 1 / f(1 / \zeta)=\zeta+b_{0}+b_{1} / \zeta+\cdots \tag{7}
\end{equation*}
$$

analytic, univalent and nonvanishing for $|\zeta|>1$. Since it is now well-known that the set

$$
\mathbb{M}_{\alpha} \equiv\{f|f \in S, J(a, f(z))>0,|z|<1\}
$$

is a subset of the set of starlike $S^{*}\left(\equiv \mathbb{M}_{0}\right)$ [3], it follows that the set

$$
\Sigma_{\alpha} \equiv\{\phi|\phi \in \Sigma, J(\alpha, \phi(\zeta))>0,|\zeta|>1\}
$$

is a subset of the subset Σ^{*} of starlike elements of Σ, and $\Sigma^{*} \equiv \Sigma_{0}$. Moreover, a calculation shows that if the relation (7) between $f \in S$ and $\phi \in \Sigma$ is written as $\phi=T(f)$, then $T(S) \equiv \Sigma$ and

$$
\begin{equation*}
J(\alpha, f(z))=J(-\alpha, T(f)) \tag{8}
\end{equation*}
$$

so that $\Sigma_{-a} \equiv T\left(S_{\alpha}\right)$.
If Φ is a nonempty subset of Σ, then the real number

$$
\mathrm{P}_{\alpha}(\Phi) \equiv \inf [\rho|J(\alpha, \phi(\zeta))>0, \phi \in \Phi,|\zeta|>\rho]
$$

can be called the radius of α-convexity of Φ. If we define F such that $\Phi \equiv T(F)$, then the following formulas follow from (8):

$$
R_{\alpha}(F)=1 / \mathrm{P}_{-\alpha}(\Phi), \quad \mathrm{P}_{\alpha}(\Phi)=1 / R_{-\alpha}(F)
$$

In particular $\mathrm{P}_{1}\left(\Sigma^{*}\right)=\left(1 / R_{-1}\left(S^{*}\right)\right)=\sqrt{3}$. But $J(1, \phi(\zeta)) \equiv \operatorname{Re}\left(1+\zeta \phi^{\prime \prime}(\zeta) / \phi^{\prime}(\zeta)\right)$, so that the constant $P_{1}\left(\Sigma^{*}\right)$ is the radius of convexity of the set Σ^{*}. Thus we have recaptured a well-known result.

REFERENCES

1. V. Ja. Gutljanskii, On the domains of variability for some functionals, Trudy Tomsk. Gos. Univ. Ser. Mat. Meh. 200 (1968), 71-87. (Russian)
2. S. S. Miller, P. T. Mocanu and M. O. Reade, Bazilevič functions and generalized convexity, Rev. Roumaine Math. Pures Appl. 19 (1974), 213-224.
3. -, All a-convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37 (1973), 553-554. MR 47 \# 2044.
4. P. T. Mocanu and M. O. Reade, The radius of a-convexity for the class of starlike functions, a-real, Notices Amer. Math. Soc. 20 (1973), A-112. Abstract \#701-30-34.

INSTITUTE OF MATHEMATICS, BABEES- BOLYAI UNIVERSITY, CLUJ, ROMANIA
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104

[^0]: Presented to the Society, January 26, 1973; received by the editors November 9, 1973 and, in revised form, May 15, 1974.

 AMS (MOS) subject classifications (1970). Primary 30A32; Secondary 30 A40.
 Key words and phrases. Starlike, convex, alpha-convex, univalent.
 1 The research of this author was supported by the National Science Foundation under NSF Grant GP-28115.

