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THE RADIUS OF a-CONVEXITY FOR THE CLASS OF
STARLIKE UNIVALENT FUNCTIONS, a-REAL

PETRU T. MOCANU AND MAXWELL O. READE!

ABSTRACT. We use a result due to Gutljanskii to obtain the radius
of a-convexity for the class S* of starlike univalent functions for real a.

1. Introduction. Let F denote a nonempty collection of functions

&Y [(2) =z +ayz?+ e

each of which is univalent in the unit disc A ={z||z| < 1} and let

] 2/'(2) z/"<z>>
2 J(a, f(2)) = Re{(1 - a) e +a<1+—/,(—z)“ )

where a is a given real number. Then the real number
3) R (F) = sup{R|J(a, f(2)) > 0, |z| <R, [ € F}

is called the radius of a-convexity of F.
Let S* be the class of functions (1) which are starlike in A, i.e. which
verify the condition

(4) Re(z/'(2)/f(2)) >0, =z € A.

In this paper we obtain Ra(S*) for all real a. This result, announced in [4],
improves an earlier one obtained by S. S. Miller and us [2]. The three of us
found the value of Ra(S*) for a > 0 by using well-known elementary esti-
mates for the functionals Re p(z) and Re(zp'(z)/p(z)) for analytic functions
p(z) = 1+ ... whose real part is positive in A, Indeed, it is Gutljan-
skil’s complicated and sophisticated relations between Re p(z) and
Relp(z) + zp'(2)/p(2)] [1] that enable us to obtain a complete solution to

the problem of determining the radius Ra(S*) for all real a.
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Here is Gutljanskii’s result, as he stated it, along with a diagram that
will help in following our application of this result.

Lemma (Gutljanskii [1]). The domain of variability D of the functional
() = Re (2/"(2)/((2)) + i Re (1 + (2/"(2)/f"(2)))

within the class' S*, for fixed z €A, is bounded by two curves T'* and T'~

as shown in the diagram below.

y

b e O

|
|
i
i

! ) A\(g?,o) (R, 0
V(:fl’m 2 1

' consists of three arcs I"I, l";, I";, where

x

F;: y = q)l(x) = Y3 - 2ax-1"1], R, <x< fl,

where a=(1+1)/(1-12), |2| =1, R, =(1-7/(1+7) and &, is the unique
positive root of the equation (2ax — 103/2 - x;

yg - Qax - Dy, +x

?

3
Fliy=0,()=2x-
2 2 2}’3

for fl <xX< fz =[(a® + 3)% - al, where Yo is the unique positive root of
y? + (2ax - Dy - 2x = 0; and

F;:y=®3(x)sx—x'l+a, §2§x§§15(1+r)/(1—r).
The arc I'” is a line segment.

I''ty=2x-a4, R gxgﬁl.
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. + + . + .
It is easy to show that I'] and I'; are concave curves, while I'; is
convex, relative to the horizontal axis.

2. Main result.

Theorem. The radius of a-convexity of the class S* of all starlike

functions is given by

(1+a)-[1+a)?-1]%, a>0,
R (5*) = M]A, —3<a<o,
2+ (ca)®

S+ -[1+a)?-11%  a<-3

Proof. For fixed a, z, we consider the line
a-1

a
Now if /€ S* and if z is fixed, then J(a, f(2)) = (1 - a)x + ay, where
x = Re(zf(2)/f(2)), y = Re(1l + zf"(2)/f"(2)) for some (x, y) € D. Hence
the problem of finding R a(S*) is replaced by the problem of finding when
L, is a support line from below (above) of the domain of variability D for a

positive (negative).

La:(l—a)x+ay=0 or y=

X

(i) Suppose o > 0. In this case we want D to be supported from below
by L,. Since the slope of L, is never greater than one, and since I'” has
slope two, it follows that L, supports D when L, passes through (R,
®,(R)), that is, when the equation

1-r 1-4r+r2
) +a

5) 1-a -0

l+7r 172
holds. From (5) we obtain

R (s =(1+a)-[1+a)?-11%,

a result obtained earlier by S. S. Miller and us [3].

(ii) Let a < 0. In this case we want L, to be a line of support for D
from above, that is, D lies below L, except for the points of ' that lie
on L. It is (geometrically) clear that L, is such a support line if and
only if L, passes through (R}, ®,(R))), or L is tangent to I';, or L,
is tangent to '}, or L passes through (R 1> ®3(R})). Here we have used
the fact that I') “‘opens up’’ so that L, cannot be a support line for D
and also be tangent to l_'; for some %, &, <% < &,
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(ii-a) If L passes through (R}, ®,(R))), then (1- a)R, + ad(R))=0
and hence 1— 2(1+ a)r + r? = 0. But this last implies that 7 + 1/r = 21 + a),
which (for @ < 0) is not compatible with the inequality r + 1/7r > 2 forall
r> 0. Hence L cannot pass through (R, ®,(R,)).

(ii—b). Suppose a < -1. We shall show that when L, is a support line
(from above) for D, then either L passes through (R 1 (1)3(721)) and /or
L, is tangent to F

. + .
First, since F *‘opens up’’, L _ cannot intersect I, and still be a
bl ’ 2

support line for D. Second, the slopeaof L,, 1~ 1/a satisfies the inequal-
ities 1< 1- 1/a < 2 in this case. Third, since the slope function (I)'I(x) of
I_‘; is a decreasing function on the interval R, <x< fl, the minimum of
@ (x) on that interval is ® (fl) Elementary calculatlons show @' (&) =

/[3 + {" 4/ 3]; here we have used the relation (Zaf 1)2/3 f . But for
0< fl <1 we see that Ql(fl) > 2, and hence @l(fl) dominates the slope
of L. Therefore L, if it is a supporting line of D, cannot be tangent to
r.

We now know that if L, is a supporting line of D, then L, must pass
through the point (R, @ (R 1)) and/or be tangent to F

Suppose L, is tangent to l" and lies above D. Then there exists x,
such that (a - l)/a =1+ l/x2 = CI) (xz), which shows x, = (- a)l/z. Since
1—‘; is concave, we have &, < x, < 721 =(1+7/(1-7). Since D lies below
L, and since L, is tangent to F; at (x,, ®5(x,)), we conclude that for
each f€ ¥, and for each fixed z, we have

J(a, f(2) > (1 - a)x, + ad,(x,)
©) .
>(1-a)-a)%+alca)’-(-a)"%+al=0

where @ = (1+ 72)/(1 - 72). From (6) we solve for 7 to obtain
r,= [(2 - )%/ + (~a)D]%,

which must satisfy the necessary condition x, = (—a)l/z < El =
(1+7,)/(1-7,). But this last holds only when —3 < a. Hence we have
found R ,(§*) = 7, but only for the range -3< a < 1.

Now we have the remaining case, a study of the supporting line for the
case a <-3. In this case L, passes through the point (R;, ®,(R ).
Hence for each f€ §* and for each fixed z, we have

2
J(a, /(z))z(l—a)§1+a¢3(§1)2(1_a)<i+'>+alzir;r

=O,

-r



a-CONVEXITY FOR STARLIKE UNIVALENT FUNCTIONS 399

which yields the solution

ry=-(1+ a) - [(1+a)?-11%,

that is, Ra(S*) =7, for the case a < -3.
(iii) Suppose —1< a < 0. If L, is tangent to F;‘ at some point
(xlv q)l(xl))’ Rl < X1 < él’ then

O v =21+ —1 ~a-l
2 3(2ax1—1)2 a

must hold, that is
2ax = 1+ [-(a+ 2)/al”.

Since (xl, (Dl(xl)) lies on L,, we have

x |1 +2_3<_2+ a>% =(1-a)x, +ad (x)=0
2 2 a

must hold. But for —1< a <0, this last relation cannot hold. Hence if L,

is a support line for D, then L, is not tangent to l":.

If L, is a support line for D and if L, passes through (R, ®,(R,)),
then (5) holds. But the left-hand member of (5) is always positive for - 1<
a <0, for 0<r<1. Hence if L, supports D from above, for -1<a <0,
then L, either passes through (R, (DB(TZI)) and/or is tangent to 1";. But
we have shown that a < -3 is a necessary condition for L, to support D
and to pass through (R, <I>3@ ). We conclude that in the present case,
-1<a <0, when L is a line of support for D, then L, is tangent to l";.
This leads to Ra(S*) =r, as in (ii-b) above.

Since it is (geometrically) clear that for each real a, for each fixed z,

there is the appropriate supporting L ,, out proof is now complete.

3. Application. Let S denote the set of all functions (1) that are uni-
valent in A, and let 2 denote the set of all functions of the form

@ D =1//(1/D=C+by+b,/L+ -

analytic, univalent and nonvanishing for |{| > 1. Since it is now well-known

that the set

X, =iflf € s Ja, () >0, |z| <1}

is a subset of the set of starlike $* (= :Tllo) [3], it follows that the set



400 P. T. MOCANU AND M. O. READE
2 =olp eI, Jla, HN>0, || > 1}

is a subset of the subset =¥ of starlike elements of 3, and 3* = 20. More-
over, a calculation shows that if the relation (7) between f€ S and € X
is written as ¢ = T(f), then T(S) =X and

8) J(a, {(2)) = J(=a, T(f))

so that 2_ = T(S ).
If ® is a nonempty subset of X, then the real number

P_(®) = inf[p|J(a, #({)) >0, & € ®, |{]|>p]

can be called the radius of a-convexity of ®. If we define F such that
® = T(F), then the following formulas follow from (8):

R,(F) = 1/P_ (D), P_(®=1/R_UF).

In particular P(3*) = (1/R_ (§¥)) = V3. But J(1, #) = Re(1+ £p"(0)/8'(Q)),
so that the constant PI(E*) is the radius of convexity of the set £*. Thus

we have recaptured a well-known result.
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