THE RADIUS OF α -CONVEXITY FOR THE CLASS OF STARLIKE UNIVALENT FUNCTIONS, α -REAL

PETRU T. MOCANU AND MAXWELL O. READE1

ABSTRACT. We use a result due to Gutljanskii to obtain the radius of α -convexity for the class S^* of starlike univalent functions for real α .

1. Introduction. Let F denote a nonempty collection of functions

(1)
$$f(z) = z + a_2 z^2 + \cdots$$

each of which is univalent in the unit disc $\Delta = \{z \mid |z| < 1\}$ and let

(2)
$$J(\alpha, f(z)) \equiv \operatorname{Re}\left\{(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1+\frac{zf''(z)}{f'(z)}\right)\right\},$$

where α is a given real number. Then the real number

(3)
$$R_{a}(F) \equiv \sup\{R | J(\alpha, f(z)) > 0, |z| < R, f \in F\}$$

is called the radius of α -convexity of F.

Let S^* be the class of functions (1) which are starlike in Δ , i.e. which verify the condition

(4)
$$\operatorname{Re}\left(zf'(z)/f(z)\right) > 0, \quad z \in \Delta.$$

In this paper we obtain $R_{\alpha}(S^*)$ for all real α . This result, announced in [4], improves an earlier one obtained by S. S. Miller and us [2]. The three of us found the value of $R_{\alpha}(S^*)$ for $\alpha \ge 0$ by using well-known elementary estimates for the functionals Re p(z) and $\operatorname{Re}(zp'(z)/p(z))$ for analytic functions $p(z) = 1 + \cdots$ whose real part is positive in Δ . Indeed, it is Gutljanskii's complicated and sophisticated relations between Re p(z) and $\operatorname{Re}[p(z) + zp'(z)/p(z)]$ [1] that enable us to obtain a complete solution to the problem of determining the radius $R_{\alpha}(S^*)$ for all real α .

Presented to the Society, January 26, 1973; received by the editors November 9, 1973 and, in revised form, May 15, 1974.

AMS (MOS) subject classifications (1970). Primary 30A32; Secondary 30A40.

Key words and phrases. Starlike, convex, alpha-convex, univalent.

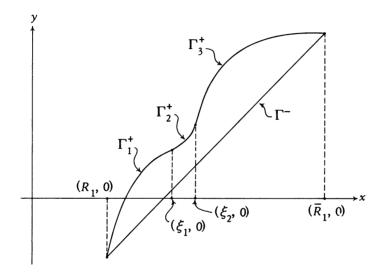
¹ The research of this author was supported by the National Science Foundation under NSF Grant GP-28115.

Here is Gutljanskii's result, as he stated it, along with a diagram that will help in following our application of this result.

Lemma (Gutljanskii [1]). The domain of variability D of the functional

$$\mathfrak{G}(f) = \operatorname{Re}\left(zf'(z)/f(z)\right) + i \operatorname{Re}\left(1 + (zf''(z)/f'(z))\right)$$

within the class S^* , for fixed $z \in \Delta$, is bounded by two curves Γ^+ and Γ^- as shown in the diagram below.



 Γ^{+} consists of three arcs $\Gamma^{+}_{1},\,\Gamma^{+}_{2},\,\Gamma^{+}_{3},$ where

$$\Gamma_1^+: y = \Phi_1(x) = \frac{1}{2}x[3 - (2ax - 1)^{-1}], \quad R_1 \le x \le \xi_1,$$

where $a \equiv (1 + r^2)/(1 - r^2)$, $|z| \equiv r$, $R_1 \equiv (1 - r)/(1 + r)$ and ξ_1 is the unique positive root of the equation $(2ax - 1)^{3/2} = x$;

$$\Gamma_2^+: y = \Phi_2(x) \equiv \frac{3}{2}x - \frac{y_0^3 - (2ax - 1)y_0 + x}{2y_0^2},$$

for $\xi_1 \le x \le \xi_2 \equiv [(a^2 + 3)^{\frac{1}{2}} - a]$, where y_0 is the unique positive root of $y^3 + (2ax - 1)y - 2x = 0$; and

$$\Gamma_3^+: y = \Phi_3(x) \equiv x - x^{-1} + a, \qquad \xi_2 \leq x \leq \overline{R}_1 \equiv (1+r)/(1-r).$$

The arc Γ^- is a line segment.

$$\Gamma^-: y = 2x - a, \qquad R_1 \le x \le \overline{R}_1.$$

It is easy to show that Γ_1^+ and Γ_3^+ are concave curves, while Γ_2^+ is convex, relative to the horizontal axis.

2. Main result.

Theorem. The radius of α -convexity of the class S^* of all starlike functions is given by

$$R_{\alpha}(S^{*}) = \begin{cases} (1+\alpha) - [(1+\alpha)^{2} - 1]^{\frac{1}{2}}, & \alpha \ge 0, \\ \left[\frac{2-(-\alpha)^{\frac{1}{2}}}{2+(-\alpha)^{\frac{1}{2}}}\right]^{\frac{1}{2}}, & -3 \le \alpha \le 0 \\ -(1+\alpha) - [(1+\alpha)^{2} - 1]^{\frac{1}{2}}, & \alpha \le -3. \end{cases}$$

Proof. For fixed a, z, we consider the line

$$L_{a}: (1-\alpha)x + \alpha y = 0 \text{ or } y = \frac{\alpha - 1}{\alpha}x.$$

Now if $f \in S^*$ and if z is fixed, then $J(\alpha, f(z)) \equiv (1 - \alpha)x + \alpha y$, where $x \equiv \operatorname{Re}(zf'(z)/f(z)), y \equiv \operatorname{Re}(1 + zf''(z)/f'(z))$ for some $(x, y) \in D$. Hence the problem of finding $R_{\alpha}(S^*)$ is replaced by the problem of finding when L_{α} is a support line from below (above) of the domain of variability D for α positive (negative).

(i) Suppose a > 0. In this case we want D to be supported from below by L_a . Since the slope of L_a is never greater than one, and since Γ^- has slope two, it follows that L_a supports D when L_a passes through $(R_1, \Phi_1(R_1))$, that is, when the equation

(5)
$$(1-\alpha)\frac{1-r}{1+r} + \alpha \frac{1-4r+r^2}{1-r^2} = 0$$

holds. From (5) we obtain

$$R_{a}(S^{*}) = (1 + \alpha) - [(1 + \alpha)^{2} - 1]^{\frac{1}{2}},$$

a result obtained earlier by S. S. Miller and us [3].

(ii) Let $\alpha < 0$. In this case we want L_{α} to be a line of support for D from *above*, that is, D lies below L_{α} except for the points of Γ^+ that lie on L_{α} . It is (geometrically) clear that L_{α} is such a support line if and only if L_{α} passes through $(R_1, \Phi_1(R_1))$, or L_{α} is tangent to Γ_1^+ , or L_{α} is tangent to Γ_3^+ , or L_{α} passes through $(\bar{R}_1, \Phi_3(R_1))$. Here we have used the fact that Γ_2^+ "opens up" so that L_{α} cannot be a support line for D and also be tangent to Γ_2^+ for some \bar{x} , $\xi_1 < \bar{x} < \xi_2$,

(ii-a) If L_{α} passes through $(R_1, \Phi_1(R_1))$, then $(1 - \alpha)R_1 + \alpha \Phi_1(R_1) = 0$, and hence $1 - 2(1 + \alpha)r + r^2 = 0$. But this last implies that $r + 1/r = 2(1 + \alpha)$, which (for $\alpha < 0$) is not compatible with the inequality $r + 1/r \ge 2$ for all r > 0. Hence L_{α} cannot pass through $(R_1, \Phi_1(R_1))$.

(ii-b). Suppose $\alpha \leq -1$. We shall show that when L_{α} is a support line (from above) for D, then either L_{α} passes through $(\overline{R}_1, \Phi_3(\overline{R}_1))$ and/or L_{α} is tangent to Γ_3^+ .

First, since Γ_2^+ "opens up", L_{α} cannot intersect Γ_2^+ and still be a support line for *D*. Second, the slope of L_{α} , $1 - 1/\alpha$ satisfies the inequalities $1 \le 1 - 1/\alpha \le 2$ in this case. Third, since the slope function $\Phi_1'(x)$ of Γ_1^+ is a decreasing function on the interval $R_1 \le x \le \xi_1$, the minimum of $\Phi_1'(x)$ on that interval is $\Phi_1'(\xi_1)$. Elementary calculations show $\Phi_1'(\xi_1) =$ $\frac{1}{2}[3 + \xi_1^{-4/3}]$; here we have used the relation $(2\alpha\xi_1 - 1)^{2/3} = \xi_1$. But for $0 < \xi_1 < 1$ we see that $\Phi_1'(\xi_1) > 2$, and hence $\Phi_1'(\xi_1)$ dominates the slope of L_{α} . Therefore L_{α} , if it is a supporting line of *D*, cannot be tangent to Γ_1^+ .

We now know that if L_a is a supporting line of D, then L_a must pass through the point $(\overline{R}_1, \Phi_3(\overline{R}_1))$ and/or be tangent to Γ_3^+ .

Suppose L_{α} is tangent to Γ_{3}^{+} and lies above *D*. Then there exists x_{2} such that $(\alpha - 1)/\alpha = 1 + 1/x_{2}^{2} = \Phi'_{3}(x_{2})$, which shows $x_{2} = (-\alpha)^{1/2}$. Since Γ_{3}^{+} is concave, we have $\xi_{2} \leq x_{2} \leq \overline{R}_{1} = (1 + r)/(1 - r)$. Since *D* lies below L_{α} and since L_{α} is tangent to Γ_{3}^{+} at $(x_{2}, \Phi_{3}(x_{2}))$, we conclude that for each $f \in S^{*}$, and for each fixed *z*, we have

$$J(\alpha, f(z)) \ge (1 - \alpha)x_2 + \alpha \Phi_3(x_2)$$

$$\ge (1 - \alpha)(-\alpha)^{\frac{1}{2}} + \alpha[(-\alpha)^{\frac{1}{2}} - (-\alpha)^{-\frac{1}{2}} + a] = 0,$$

where $a = (1 + r^2)/(1 - r^2)$. From (6) we solve for r to obtain

$$r_{2} = \left[(2 - (-\alpha)^{\frac{1}{2}}) / (2 + (-\alpha)^{\frac{1}{2}}) \right]^{\frac{1}{2}},$$

which must satisfy the necessary condition $x_2 = (-\alpha)^{1/2} \le \overline{R}_1 = (1+r_2)/(1-r_2)$. But this last holds only when $-3 \le \alpha$. Hence we have found $R_{\alpha}(S^*) = r_2$, but only for the range $-3 \le \alpha \le 1$.

Now we have the remaining case, a study of the supporting line for the case $\alpha < -3$. In this case L_{α} passes through the point $(\bar{R}_1, \Phi_3(\bar{R}_1))$. Hence for each $f \in S^*$ and for each fixed z, we have

$$J(\alpha, f(z)) \ge (1-\alpha)\overline{R}_1 + \alpha \Phi_3(\overline{R}_1) \ge (1-\alpha)\left(\frac{1+r}{1-r}\right) + \alpha \frac{1+4r+r^2}{1-r^2} = 0,$$

(6)

which yields the solution

$$r_3 = -(1 + \alpha) - [(1 + \alpha)^2 - 1]^{\frac{1}{2}},$$

that is, $R_{\alpha}(S^*) = r_3$ for the case $\alpha < -3$.

(iii) Suppose $-1 \le \alpha < 0$. If L_{α} is tangent to Γ_1^+ at some point $(x_1, \Phi_1(x_1)), R_1 \le x_1 \le \xi_1$, then

$$\Phi'_{1}(x_{1}) = \frac{3}{2} \left[1 + \frac{1}{3} \frac{1}{(2ax_{1} - 1)^{2}} \right] = \frac{\alpha - 1}{\alpha}$$

must hold, that is

$$2ax_{1} = 1 + [-(\alpha + 2)/\alpha]^{\frac{1}{2}}.$$

Since $(x_1, \Phi_1(x_1))$ lies on L_a , we have

$$x_{1}\left[1+\frac{\alpha}{2}-\frac{\alpha}{2}\left(-\frac{2+\alpha}{\alpha}\right)^{\frac{1}{2}}\right] = (1-\alpha)x_{1}+\alpha\Phi_{1}(x_{1}) = 0$$

must hold. But for $-1 \le \alpha < 0$, this last relation cannot hold. Hence if L_a is a support line for D, then L_a is not tangent to Γ_1^+ .

If L_a is a support line for D and if L_a passes through $(R_1, \Phi_1(R_1))$, then (5) holds. But the left-hand member of (5) is always positive for $-1 \le \alpha < 0$, for $0 \le r < 1$. Hence if L_a supports D from above, for $-1 \le \alpha < 0$, then L_a either passes through $(\overline{R}_1, \Phi_3(\overline{R}_1))$ and/or is tangent to Γ_3^+ . But we have shown that $\alpha \le -3$ is a necessary condition for L_a to support Dand to pass through $(\overline{R}_1, \Phi_3(\overline{R}_1))$. We conclude that in the present case, $-1 \le \alpha < 0$, when L_a is a line of support for D, then L_a is tangent to Γ_3^+ . This leads to $R_a(S^*) = r_2$ as in (ii-b) above.

Since it is (geometrically) clear that for each real α , for each fixed z, there is the appropriate supporting L_{α} , out proof is now complete.

3. Application. Let S denote the set of all functions (1) that are univalent in Δ , and let Σ denote the set of all functions of the form

(7)
$$\phi(\zeta) \equiv 1/f(1/\zeta) = \zeta + b_0 + b_1/\zeta + \cdots$$

analytic, univalent and nonvanishing for $|\zeta| > 1$. Since it is now well-known that the set

$$\mathfrak{M}_{\alpha} \equiv \{f \mid f \in S, \ J(\alpha, f(z)) > 0, \ |z| < 1\}$$

is a subset of the set of starlike $S^* (\equiv \mathfrak{M}_0)$ [3], it follows that the set

P. T. MOCANU AND M. O. READE

 $\boldsymbol{\Sigma}_{\boldsymbol{\alpha}} \equiv \{ \boldsymbol{\phi} | \boldsymbol{\phi} \in \boldsymbol{\Sigma}, \, J(\boldsymbol{\alpha}, \, \boldsymbol{\phi}(\boldsymbol{\zeta})) > 0, \, |\boldsymbol{\zeta}| > 1 \}$

is a subset of the subset Σ^* of starlike elements of Σ , and $\Sigma^* \equiv \Sigma_0$. Moreover, a calculation shows that if the relation (7) between $f \in S$ and $\phi \in \Sigma$ is written as $\phi = T(f)$, then $T(S) \equiv \Sigma$ and

(8)
$$J(\alpha, f(z)) = J(-\alpha, T(f))$$

so that $\Sigma_a \equiv T(S_a)$.

If Φ is a nonempty subset of Σ , then the real number

$$\mathbf{P}_{\sigma}(\Phi) \equiv \inf \left[\rho | J(\alpha, \phi(\zeta)) > 0, \phi \in \Phi, |\zeta| > \rho \right]$$

can be called the radius of α -convexity of Φ . If we define F such that $\Phi \equiv T(F)$, then the following formulas follow from (8):

$$R_{a}(F) = 1/P_{a}(\Phi), \quad P_{a}(\Phi) = 1/R_{a}(F).$$

In particular $P_1(\Sigma^*) = (1/R_{-1}(S^*)) = \sqrt{3}$. But $J(1, \phi(\zeta)) \equiv \operatorname{Re}(1 + \zeta \phi''(\zeta)/\phi'(\zeta))$, so that the constant $P_1(\Sigma^*)$ is the radius of convexity of the set Σ^* . Thus we have recaptured a well-known result.

REFERENCES

1. V. Ja. Gutljanskii, On the domains of variability for some functionals, Trudy Tomsk. Gos. Univ. Ser. Mat. Meh. 200 (1968), 71-87. (Russian)

2. S. S. Miller, P. T. Mocanu and M. O. Reade, Bazilevič functions and generalized convexity, Rev. Roumaine Math. Pures Appl. 19 (1974), 213-224.

3. _____, All a-convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37 (1973), 553-554. MR 47 #2044.

4. P. T. Mocanu and M. O. Reade, The radius of α-convexity for the class of starlike functions, α-real, Notices Amer. Math. Soc. 20 (1973), A-112. Abstract #701-30-34.

INSTITUTE OF MATHEMATICS, BABES-BOLYAI UNIVERSITY, CLUJ, ROMANIA

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104

400