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ABSTRACT.  In the set of bounded Hermitian operators from a Hubert

space  H  into itself, we define three types of ordering by means of the

cones of nonnegative, positive definite and positive invertible operators

respectively.   Our main theorem shows that for all three types of ordering,

if  A   is "greater" than  B, then  Ar is "greater" than  Br for all real num-

bers  r s 1.  This generalizes the results of Heinz [3] and Kato UJ-

1.  Introduction and statement of the theorem.   Let  H be a Hilbert space

over the complex numbers, with inner product <■, •> and norm   ||-||, and  A be

the set of bounded nonnegative Hermitian linear operators from  H into itself.

We shall distinguish three types of ordering in  A.  Let  A, B £ A, and  H    =

[u £H:u4 0].

(1) A > B  iff <u, Au> > <zz, Bzz>  for all  u £ H.

(2) A > B iff <zz, Azz> > <zz, Bzz> for all zz £ H*.

(3) A » B  iff A - B > 0 and is invertible.

We shall use the symbol   >- when we mean any one of the three types of

ordering.  Our main purpose is to prove

Theorem 1.  // A, B £ A and A > B, then AT > BT for any  0 < r < 1.

In the case when  H  is finite dimensional, the theorem is a well-known

result of Loewner's dJ concerning matrices.  Au-Yeung recently gave a sim-

ple proof in [l].

In the infinite-dimensional case, the same theorem for the ordering >

was first given by Heinz [3, Satz 3Í.  Kato [4] gave an elementary proof. In

this paper, we give another elementary proof as well as a generalization of the

result to the orderings  >  and S>. Moreover, the classical theorem of Heinz

is strengthened as stated in Theorem 2 of §5.  The author wishes to thank Dr.

Y. H. Au-Yeung for suggesting this problem and for his inspiring discussions.

Notice that in finite-dimensional spaces, (2) and (3) are equivalent.

Let A   = [A £ A: A » OÍ. Then A e A* iff there is a positive real num-
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ber 77z  such that  A > 772L  Here  / denotes the identity mapping.

We point out the following simple but useful fact.

Lemma 1.  // A, B £ A and A > B, then for every  D £ A*  DAD > DBD.

Conversely, if there exists a D £ A    such that  DAD > DBD, then A  >■ B.

2. The special case r = lA- We need the following lemmas.

Lemma 2.  Suppose that A £ A , B £ A and a  is the supremum of the

quotients   ||Bzz||/||Azz||  for all u £ H and u 4 0.   Then <u, Bu> < a<u, Au> for

all u £ H.

Proof. A £A* implies that AVl £ A*, and so D = A~Vl £ A*.  Let  C =

DBD £ A.  By the well-known theory of integral representation of Hermitian

operators, there is a spectral decomposition associated with  C (see, for ex-

ample, [2, p. 275Í) say  {Fxi for -°° < A < =c) and C = f^_ r\dEx where ß =

\\C\\.  Hence  <u, Cu> = fP_ Azi||F^||     from which we obtain  sup!<u, Czz>:

u £ H, ||u|| = 1Î = jS. It is not difficult to see that

sup Ku, Bu)/(u, Au):   u£ H, u 4 0] = sup|<«, Cu): u £ H, \\u\\ = l!.

The lemma will be proved if given any £ > 0, we can exhibit a v £ H such

that  ||Biz||/||Azz|| > ß- e.  Let

'-*rl|/2|A«|',

and A. = ß — 6. When c is small enough, A. > 0. Choose a nonzero vector

u £ H such that E^u = 0 fot some A such that AQ < A < ß. Finally define

v = Du. Since

= AVl fP XdEAAlAv)r

have

Hence

Av = A*u=A*tf dExiAy>v),

\0Av\\ = A>A [ß i\-\AdEAAy>v)

<||A^||t9||A^||<ö||A^||2|

Bv \Av\\>i\\XQAv\\ \Bv - AgAtz Av

>\-ie\\Ay\\2\\v M-ß-e.



POWERS OF NONNEGATIVE HERMITIAN OPERATORS 403

Lemma 3. Suppose that A, B £ A and A > B. If uQ is a vector in H

such that <uQ, BuQ> = <uQ, AuQ>, then AuQ = Bzzn- In other words, A ~/> B

implies that  A2 /> B2.

This is a well-known result.  See, for example [6, p. 327, equation (6.11

-7)1

Lemma 4. A, B £ A and A2 > B2, then A > B.

* 2
Proof.  First assume that A £ A . Then from hypothesis, <u, A  u> >

<zz, B2u> tot all u £ H.   Thus   ||Bu||/||Azz|| < 1 for all u £ H, u 4 0.  By Lemma

2,

(u, Bu)/(u, Au)<a < 1.

This is the required conclusion.  In general, A + ni £ A    for all positive 72

and (A + z2/)2 = A2 + 2nA + n2l> B2. Thus A + 72/ > B.   Let 72 go to zero.

Lemma 5. A, B £ A and A2 > B2, then A > B.

Proof.  By Lemma 4, A > B.  Then apply Lemma 3.

Lemma 6.  A, B £ A and A2 » B2, then A » B.

Proof.  For some positive tzz, A2 > B2 + ml.  As B is bounded, ||B||/ > B.

Choose 77  so small that   (m - n2)l > 2rzB.   Then  A2 > B2 + ml > B2 + 2tzB +

722/.   By Lemma 4, A > ß + 72/.

3.  Some more inequalities.

Lemma 7.  Lcz X, Y £ A zztzzz7 C, D £ A* suez; zAzzi  C > D.   If YDY >

XCX, then   Y > X.

Proof.  By Lemma 1, YCY>YDY.   Thus  YCY  > XCX.  So

(c^yc^Xei^c*) > (cH xcvAicVixcyA.

By Lemmas 4, 5 and 6, C^YC^   >■ C^XC   .  Lemma 1 then gives the conclu-

sion.

Lemma 8.   // A £ A , B £ A and AT > Br, then

w here r, s are real numbers

Bs > B^+s'/2A~rg(r+s)/2

Proof. Notice two simple facts. First, if X £ A and X >- /, then / >

X" (by Lemma 1 using X, / and X~Vl in place of A, ß and D). Second,

if X, Y £ A* and  Y > X, then  X'1  > Y"1  (by Lemma 1, X'^YX"^ > 1,
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so  /  >■ (X-1/2YX-H)_1 = XHY_1XH; then apply Lemma 1 again). Now assume that

A, B £ A*  and  Ar > Br.  Then  B~T > A~\  Lemma 1 then gives the conclu-

sion.  In general, consider  Ar + ni and  Br + «/ for any positive  n.   The above

implies that

(BT + nl)s/r > iBT + nl)(s+r)/2riAr + nI)-lÍBr + nl){s+r)/lr.

Let 72  tend to zero.

Lemma 9.  // A  £ A , ß  £ A and if r, s are two real numbers such that

AT> Br, As  > Bs, then  A(r+s)/2   > B(r+s)/2.
-

Proof. A(r+s)/2A-rA(r+s)/2 = As > Bs > B{r+s)/2A-rB{T+s)/2.  Then use

Lemma 7.

4. Proof of the main theorem  (>, »). First assume that A £A . This is

no restriction in case  A X> B,  Then Lemmas 4, 5, 6 and 9 show that  A     >-

Bq if  q is any dyadic fraction in [0, lL The set of dyadic fractions is dense

in [0, lL  A continuity argument lifts the restriction that  A  £ A  , for the case

A > B.   When  A » B, we have  A > B + ml tot some positive  ttz.  Thus  AT >

(B + Z7z/)r.   The function   [(A + 7zz)r — Ar] being positive on the closed interval

[O, ||ß||] has a positive lower bound   Z2. Then using the spectral decomposi-

tion, we see without difficulty that  (ß + 77z/)r > Br + nl.  Hence Ar y> Br, The

case where  A > ß needs a little more effort and will be proved in the next

section.

5. Proof of the main theorem (>).

Lemma 10.  Suppose that A, B £ A and A2 > B2.   Furthermore there ex-

ists a vector uQ £ H    such that  AuQ = BuQ.   Then  F(A)uQ = F(B)uQ for any

continuous function  F.

Proof.  Let E = [u £ H: Au = Bu],  By Lemma 3,A2u = B2u tot all u £ E.

In particular, A  uQ- B  uQ = BAzzQ.  Hence  AuQ  again belongs to  E.  Thus

A  uQ = B AuQ = ß zzQ.  By induction, A"uQ = BnuQ tot any positive integer

?2.   By Weierstrass approximation theorem,  F can be uniformly approximated

by polynomials, and hence the conclusion.

Corollary 1. // A, B £ A and A > B, then unless there exists a zz„ £ H*

such that F(A)uQ = F(B)uq for all continuous functions F, we have AT > Br

for all r < l/7.

Corollary 2.  A, B £ A  (A  £ A*) and A > B.   Then, unless there exists a

uQ £ H    such that F(A)uQ = F(b)uq for all continuous functions F, Ar > Br

for all r < 1.
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Proof.  Suppose that there is an  r < 1   such that  Ar 4 BT. By Corollary 1,

r > Vi.  So  6 = 1 - r < Vi.  By Lemma 9, A1'26 4 B1~26.  We can continue the

process for 72  steps until we have   2"6 > lA.   This contradicts Corollary 1.

Notice that the restriction  A  £ A    can be removed after we prove Lemma 11.

Lemma 11.   Lemma 9 in the case As > Bs  is still true even if A  £ A

only.

I roof.  From the main theorem for the ordering >, we have  A(T*S>     >

ß(r+i)/2, so A<r+*>/2 + / > B(r+S)/2 + I.  Thus   (A^>/2 + I)e> (ß('+-)/2 + if

tot all d < 1.  Choose  6 so small that  (r + s)(l+ 6)/2 < r.  We study the func-

tions

fia, u)=(u, (A^/2 + a)1+Su),      gia, u) = (u, (B{r+S^2 + a)U*a)

for u £ H, a real and > 0,

Now

dfia, u)/da = (1 + d)(u, (A(r+i)/2 + a)öu>.

Thus

ii/(a, u)/da > dgia, u)/da.

This implies that

/(I, u) = fiO, u) ./J | da > g(0, u) ♦ /J I <*x = g(l, «).

Here /(0, zz) > g(0, u). Thus   (A('+*)/2 + I)1*6 > (B^s)/2 + l)1*9.   By Corol-

lary 2, (A^'72 + /) > (B^+s)/2 + 1), unless there exists a  zzQ £ W*, having

the property stated there, in particular As¡z. = BsuQ, contradicting the hypoth-

esis.   Therefore   A(r+*)/2 > B(r+s)/2.

Now it is obvious that Corollary 1 and Lemma 11 give the main theorem.

Remark.  From Corollary 3, we can write the main theorem in the case

A > ß in a slightly stronger form.

Theorem 2.  Suppose that A, B £ A and A > B, A 4 B.   We have two

cases:

(1) Ar > BT for all r < 1, but  AT / BT.    This is so iff there exists a u

£ H    such that F(A)uQ = F(B)uq for all continuous functions  F.

(2) If no such uQ  exists, then AT > Br for all r < 1  and Ar / Br for all

r> 1.
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This means that except under a very particular condition, even if we

start with a nonstrict inequality A > B, we can deduce a strict inequality

Ar > Br for all r < 1.
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