INTERSECTING UNIONS OF CONVEX SETS IN R^{n}

MARILYN BREEN

Abstract

Let $\mathcal{C}=\left\{C_{a}\right.$: a in some index set $\left.I\right\}$ be a collection of convex sets, and let $\pi=\left\{\mathscr{C}_{\alpha} \cup C_{\beta} \dot{*} a \neq \beta, C_{\alpha} C_{\beta}\right.$ in $\left.\mathcal{C}\right\}$. In this paper, various decomposition theorems are obtained for the set $\cap \pi$.

1. Introduction. In [1], it is proved that if \mathcal{C} is a collection of closed convex sets in the plane and if $\mathbb{M}=\{A \cup B: A, B$ distinct members of $\mathcal{C}\}$, then the set \cap_{M} is expressible as a union of three or fewer closed convex sets. In this paper, an attempt is made to obtain similar decompositions without the restriction that C be planar. Although several theorems are stated for an arbitrary linear topological space, restrictions on the convex sets reduce the setting to R^{n}, and all the theorems are essentially finite dimensional ones. Throughout the paper, aff S and ker S will be used to denote the affine hull and kernel, respectively, for the set S. If S is convex, $\operatorname{dim} S$ will denote the dimension of the affine hull of S, and for convenience, we say that the dimension of the null set is -1 .
2. Decomposition theorems for $\cap \pi$. The following easy lemmas will be useful.

Lemma 1. Let $\mathcal{C}=\left\{C_{a}: \alpha\right.$ in some index set $\left.I\right\}$ be a collection of sets, and let $\mathbb{M}=\left\{C_{a_{1}} \cup \ldots \cup C_{a_{k}}: a_{1}, \ldots, a_{k}\right.$ distinct member of $\left.I\right\}$. Then $x \in$ กM if and only if there are at most $k-1$ members a in I for which $x \notin$ C_{α}.

Lemma 2. Let $C=\left\{C_{\alpha}: \alpha\right.$ in some index set $\left.I\right\}$ be a collection of convex sets in some linear topological space, and let $\pi=\left\{C_{a_{1}} \cup \ldots \cup C_{a_{k}}\right.$: $\alpha_{1}, \ldots, \alpha_{k}$ distinct members of I\}. Then $\cap \mathbb{C} \subseteq \operatorname{ker}(\cap M)$.

Theorem 1. Let $C=\left\{C_{\alpha}: \alpha\right.$ in some index set $\left.I\right\}$ be a collection of convex sets in some linear topological space, and assume that, for some $n \geq 1$, at least $n+1$ of these sets have dimension no greater than $n-1$.

Received by the editors April 1, 1974 and, in revised form, June 7, 1974.
AMS (MOS) subject classifications (1970). Primary 52A20, 52A40.
Key words and phrases. Unions of convex sets, maximal convex subsets.

Letting $\mathbb{M}=\left\{C_{\alpha} \cup C_{\beta}: \alpha \neq \beta, C_{\alpha} C_{\beta}\right.$ in $\left.C\right\}$, if $\operatorname{dim} \operatorname{aff}(\bigcap M)$ is at least n, then $\cap \mathbb{M}$ is a union of $n+1$ or fewer convex sets, each containing $\cap \mathcal{C}$. The number $n+1$ is best possible for every n.

Proof. We use an inductive argument. If $n=1$, then at least two members A, B of \mathcal{C} are singleton sets, $\cap \mathbb{M} \subseteq A \cup B$, and trivially \bigcap_{M} consists of exactly two points.

Assume that the result is true for every integer $m, 1 \leq m \leq n-1$, to prove for n. There are two cases to consider.

Case 1. Suppose that there are $n+1$ affinely independent points x_{1}, \ldots, x_{n+1} of $\cap \pi n$ not in $\bigcap \mathcal{C}$. Then for each $i, 1 \leq i \leq n+1$, we may select a corresponding set A_{i} in \mathcal{C} with $x_{i} \notin A_{i}$. For any C in $\mathcal{C} \sim$ $\left\{A_{1}, \ldots, A_{n+1}\right\}, C$ necessarily contains each of the $n+1$ affinely independent points x_{1}, \ldots, x_{n+1}, and so $\operatorname{dim} C \geq n$. Hence the A_{i} sets must be exactly those members of \mathcal{C} which have dimension no greater than $n-1$, and the A_{i} sets are necessarily distinct, $1 \leq i \leq n+1$. Then each A_{i} must contain each of the n points $x_{j}, j \neq i, 1 \leq j \leq n+1$. Since the points x_{1}, \ldots, x_{n+1} are vertices of an n-dimensional simplex, each A_{i} lies in the affine hull of a facet of the simplex. Therefore $A_{1} \cap \ldots \cap A_{n+1}=\varnothing$ and $\cap M$ is just the union of the $n+1$ convex sets B_{i}, where $B_{i} \equiv \bigcap\{C: C$ in $\mathcal{C}, C \neq$ $\left.A_{i}\right\}=\left\{x_{i}\right\}, 1 \leq i \leq n+1$.

Case 2. If there are at most $k+1<n+1$ affinely independent points x_{1}, \ldots, x_{k+1} of $\bigcap \mathbb{M}$ not in $\bigcap \mathcal{C}$, these points lie in a k-dimensional flat π (and clearly we may assume $0 \leq k$ for otherwise the result is trivial). Select points x_{k+2}, \ldots, x_{n+1} in $\bigcap M$ so that $x_{1}, \ldots, x_{k+1}, x_{k+2}, \ldots, x_{n+1}$ are affinely independent. Then each of the $n-k$ points x_{k+2}, \ldots, x_{n+1} must lie in $\cap \mathcal{C}$. For each of the members A of \mathcal{C} for which $\operatorname{dim} A \leq n-1$, there are no more than $n-(n-k)=k$ affinely independent points of A in π, and $\operatorname{dim}(A \cap \pi) \leq k-1$. Hence $\mathcal{C}^{\prime} \equiv\{C \cap \pi: C$ in $\mathcal{C}\}$ is a collection of convex sets, at least $n+1>k+1$ of which have dimension no greater than $k-1$. Letting $\mathbb{M}^{\prime} \equiv\left\{C_{\alpha}^{\prime} \cup C_{\beta}^{\prime}: \alpha \neq \beta, C_{\alpha}^{\prime}, C_{\beta}^{\prime}\right.$ in $\left.\mathcal{C}^{\prime}\right\}$, $\operatorname{dim} \operatorname{aff}\left(\cap M^{\prime}\right)=$ $\operatorname{dim} \operatorname{aff}((\bigcap M) \cap \pi)=k$. Therefore, by our induction hypothesis, $\cap \pi^{\prime}$ is a union of $k+1$ or fewer convex sets, say $S_{1}^{\prime}, \ldots, S_{k+1}^{\prime}$, each containing ne'.

We assert that $\bigcap \mathbb{M}$ is a union of the $k+1$ convex sets $S_{i} \equiv S_{i}^{\prime} \cup(\bigcap \mathcal{C})$, $1 \leq i \leq k+1$: For x in $\bigcap \pi$ and x not in any $S_{i}^{\prime}, 1 \leq i \leq k+1$, then $x \notin \pi$, so x must belong to every C in \mathcal{C}. Hence $S_{1} \cup \ldots \bar{\cup} S_{k+1}=\bigcap \Re$. To show that each S_{i} is convex, clearly we need only consider r in S_{i}^{\prime}, s in $\bigcap \mathcal{C}$
to show that $[s, r] \subseteq s_{i}$. Now by Lemma $2, s$ is in $\operatorname{ker}(\bigcap \mathbb{M})$, so $[s, r] \subseteq$〇M. If $s \in \pi$, the result is immediate since $\cap \mathbb{C}^{\prime} \subseteq S_{i}$. Otherwise, $[s, r)$ $\cap \pi=\varnothing$, so $[s, r) \subseteq \bigcap \pi \sim \pi \subseteq \cap \mathcal{C}$, and $[s, r] \subseteq(\bigcap \mathcal{C}) \cup S_{i}^{\prime}=S_{i}$. Thus S_{i} is convex, $1 \leq i \leq k+1$, and the assertion is proved, finishing Case 2.

This completes the inductive argument, and we conclude that the statement of the theorem is true for every integer $n \geq 1$.

Remark. To see that the bound of $n+1$ in Theorem 1 is best possible, refer to Example 1 of this paper.

Theorem 2. Let $\mathcal{C}=\left\{C_{\alpha}: \alpha\right.$ in some index set I\} be a collection of convex sets in $R^{n}, n \geq 1$, and let $\pi=\left\{C_{\alpha} \cup C_{\beta}: \alpha \neq \beta, C_{\alpha}, C_{\beta}\right.$ in $C_{\}}$. If there is an $n+1$ member subset J of I such that aff $\left(C_{\alpha} \cap(\cap)(i)\right) \neq \operatorname{aff}\left(C_{\beta} \cap(\Omega)\right.$) $)$ for $\alpha \neq \beta, \alpha$ in J, β in I, then $\cap \mathbb{M}$ is a union of $n+1$ or fewer convex sets, each containing Пе. The number $n+1$ is best possible.

Proof. The inductive argument of Theorem 1 may be suitably adapted to yield the result. The only significant difference appears in Case 2: As in Case 2, affinely independent points $x_{1}, \ldots, x_{k+1}, x_{k+2}, \ldots, x_{j+1}$ are. selected in $\bigcap \pi$ with x_{1}, \ldots, x_{k+1} in the k-dimensional flat π and not in Пе, and x_{k+2}, \ldots, x_{j+1} in $\cap \mathcal{C}^{k+1} \pi$, where $j=\operatorname{dim}$ aff $(\cap \mathbb{N})$ and $0 \leq k \leq j$. Then for α in J, β in I, and $\alpha \neq \beta$,

$$
\operatorname{aff}\left(C_{a} \cap \pi \cap(\cap \pi)\right) \neq \operatorname{aff}\left(C_{\beta} \cap \pi \cap(\cap \pi i)\right)
$$

for otherwise

$$
\begin{aligned}
\operatorname{aff}\left(\left[C_{\alpha} \cap \pi \cap\right.\right. & \left.(\cap \pi)] \cup\left\{x_{k+2}, \ldots, x_{j+1}\right\}\right) \\
& =\operatorname{aff}\left(\left[C_{\beta} \cap \pi \cap(\cap \pi)\right] \cup\left\{x_{k+2}, \ldots, x_{j+1}\right\}\right)
\end{aligned}
$$

and since x_{k+2}, \ldots, x_{j+1} are in every C in \mathcal{C},

$$
\operatorname{aff}\left(C_{\alpha} \cap(\cap \pi)\right)=\operatorname{aff}\left(C_{\beta} \cap(\cap \pi)\right)
$$

clearly impossible. Hence the induction hypothesis may be applied to the sets C^{\prime} and $\bigcap^{\prime} \pi^{\prime}$ of Case 2 to complete the argument.

The following example shows that the bound of $n+1$ in Theorems 1 and 2 is best possible.

Example 1. For $n \geq 1$, let T denote an n-dimensional simplex and \mathcal{C} the collection of facets of T. Then \mathcal{C} has $n+1$ members, $\cap \mathcal{C}=\varnothing$, and $\cap_{\mathbb{N}}$ is the collection of points which lie in exactly n facets of T. Hence
$\bigcap M$ is just the vertex set of T and consists of $n+1$ isolated points.
Another kind of decomposition is given in Theorem 3.
Theorem 3. Let $C=\left\{C_{\alpha}\right.$: α in some index set $\left.I\right\}$ be a collection of closed convex sets, and let $M=\left\{C_{\alpha} \cup C_{\beta}: \alpha \neq \beta, C_{\alpha^{\prime}} C_{\beta}\right.$ in $\left.C\right\}$. If for some $k \geq 1$ members $\alpha_{1}, \ldots, \alpha_{k}$ in I, $\operatorname{dim}\left(C_{a_{1}} \cap \ldots \cap C_{a_{k}}\right) \leq i,-1 \leq i \leq 2$, then〇M is a union of $k+i+1$ or fewer closed convex sets. The bound is best possible for every pair k, i.

Proof. For convenience of notation, let $C_{\alpha_{i}}=C_{i}, 1 \leq i \leq k$, and define $D_{i} \equiv \bigcap\left\{C: C\right.$ in $\left.\mathcal{C}, C \neq C_{i}\right\}$. For x in $\bigcap M$, either x lies in one of the closed convex sets $D_{i}, 1 \leq i \leq k$, or $x \in C_{1} \cap \ldots \cap C_{k}$.

We assert that the set $C_{1} \cap \ldots \cap C_{k} \cap(\bigcap \Omega)$ is expressible as a union of $i+1$ or fewer closed convex sets: Define $\mathcal{C}^{\prime} \equiv\left\{C_{1} \cap \ldots \cap C_{k} \cap C_{\alpha}=\right.$ $C_{\alpha}^{\prime}: \alpha$ in $\left.I\right\}$, and let $\mathbb{K}^{\prime} \equiv\left\{C_{\alpha}^{\prime} \cup C_{\beta}^{\prime}: \alpha \neq \beta, C_{\alpha}^{\prime}, C_{\beta}^{\prime}\right.$ in $\left.C^{\prime}\right\}$. Then $C_{1} \cap \ldots \cap$ $C_{k} \cap(\cap M)$ is exactly $\bigcap^{\prime} \Pi^{\prime}$. If $i=2$, then \mathcal{C}^{\prime} is a collection of closed convex sets in the plane, and by suitably adapting Theorem 1 in [1], $\bigcap^{\prime} M^{\prime \prime}$ is a union of three or fewer closed convex sets, the desired result. In case $i=$ 1 , techniques used in [1] may be used to show that $\bigcap^{\prime \prime}{ }^{\prime}$ ' is a union of 2 or fewer closed convex sets. For $i=0$ or $i=-1$, the result is trivial.

Therefore, $C_{1} \cap \ldots \cap C_{k} \cap(\cap \pi)$ is a union of $i+1$ closed convex sets, and hence $\cap \mathbb{M}$ is a union of $k+i+1$ or fewer closed convex sets, finishing the proof of Theorem 3.

Example 2 reveals that the bound $k+i+1$ is best possible for every pair k, i.

Example 2. For a given $k \geq 1$ and for $-1 \leq i \leq 2$, if $k+i \geq 1$, let \mathcal{C} denote the $k+i+1$ facets of a simplex T in $R^{k+\bar{i}}$. Then k members of \mathcal{C} intersect in an i-dimensional set, and $\bigcap M$, the vertex set of T, is a union of $k+i+1$ closed convex sets. If $k+i=0$, some member of \mathcal{C} is empty, and $\bigcap M$ is convex.

Corollary. If C is a finite collection of closed convex sets in R^{n} and $\operatorname{dim}(\bigcap \mathcal{C}) \leq 2$, then the corresponding set $\bigcap_{I N}$ is a union of $\sigma(n)+3$ or fewer closed convex sets, where $\sigma(n)=\max (n+1,2 n-4)$.

Proof. By a theorem of Katchalski [2], if all $\sigma(n)$ sets in C have at least a 3 -dimensional intersection, then so does $\cap \mathcal{C}$. Hence if $\operatorname{dim}(\bigcap \mathcal{C}) \leq$ 2, there are some $\sigma(n)$ sets in \mathcal{C} whose intersection has dimension no more than 2. By Theorem 3, $\cap M$ is a union of $\sigma(n)+2+1$ or fewer closed convex sets.

REFERENCES

1. Marilyn Breen, Intersecting unions of maximal convex sets, Proc. Amer. Math. Soc. 39 (1973), 587-590. MR 47 \#7592.
2. Weir Katchalski, The dimension of intersections of convex sets, Israel J. Math. 10 (1971), 465-470. MR 46 \#4367.

DEP ARTMENT OF MATHEMATICS, UNIVERSITY OF OKLAHOMA, NORMAN, OKLA. HOMA 73069

PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 51, Number 2, September 1975

A CHARACTERIZATION OF THE KERNEL OF A CLOSED SET

MARILYN BREEN

ABSTRACT. Let S be a closed subset of some linear topological space such that int ker $S \neq \varnothing$ and ker $S \neq S$ 。 Let \mathcal{C} denote the collection of all maximal convex subsets of S and, for any fixed $k \geq 1$, let $\pi=\left\{A_{1} \cup \cdots \cup A_{k}: A_{1}, \ldots, A_{k}\right.$ distinct members of $\left.C\right\}$. Then $\pi \neq \varnothing$ and $\bigcap_{\pi=\operatorname{ker} S}$.

If \mathcal{C} is the collection of all maximal convex subsets of some set S, it is easy to show that $\bigcap C=k e r S$. This paper provides an interesting and perhaps surprising analogue of this well-known result. Throughout the paper, conv S, int S, and ker S will be used to denote the convex hull, interior, and kernel, respectively, for the set S.

Further, we will make use of these familiar definitions: For points x, y in a set S, we say x sees y via S if and only if the corresponding segment $[x, y]$ lies in S. A subset T of S is said to be a visually independent subset of S if and only if for every x, y in $T, x \neq y, x$ does not see y via S.

[^0]
[^0]: Received by the editors April 1, 1974 and, in revised form, June 7, 1974. AMS (MOS) subject classifications (1970). Primary 52A05.
 Key words and phrases. Convex kernel, maximal convex subsets, unions of convex sets.

