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T-REGULAR-CLOSED CONVERGENCE SPACES
D. C. KENT, G.D. RICHARDSON AND R. J. GAZIK

ABSTRACT. It is known that a convergence space which has a regular
compactification is almost identical to a completely regular topological
space. It is shown that a less restricitive class of convergence spaces have
T-regular—closed extensions with the universal property of the Stone-Cech

compactification.

1. Introduction. In [6] one of us showed that each Hausdorff convergence
space has a Hausdorff compactification with an extension property for con-
tinuous functions into compact regular spaces. In [7] two of us showed that
a convergence space has a regular compactification iff the space is regular
and has the same ultrafilter convergence as a completely regular topological
space. In this paper we obtain a ‘‘regular compactification’’ which has a uni-
versal property like the compactifications of [6] and [7] for a class of con-
vergence spaces (which includes spaces having highly nonidempotent clo-
sure operators) by relinquishing the requirement that the ‘‘compactification”’
space be compact. Instead, we require that it be T-regular-closed, a concept
resembling, but more general than, compactness.

A convergence space (X, —) consists of a set X and a relation '*—”’
between the filters on X and the elements of X, subject to the following
conditions:

(1) x* = x, all x € X;

(F > xand F<G implies § — x;

(3) F — x implies F N x* — x.

For x € X, x* denotes the fixed ultrafilter generated by {x}; if A is a non-
emi)ty subset of X, then A will denote the filter of all oversets of A. The
expression "*F — x’’ should be read “‘the filter § converges to the point
x"’, We will use the abbreviation “‘u.f.’’ for “‘ultrafilter’.

Throughout the paper, space will mean convergence space. We will
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usually refer to a space as **X’’ rather than *‘(X, —)’’. A space is Haus-
dorff if each filter converges to at most one point. All spaces are assumed
to be Hausdorff unless otherwise indicated.

Fischer [3] defined a space X to be regular if cly ¥ — x whenever

* is the closure operator for X and F is a filter on X.

-+ x, where ‘‘cl,’
This definition has become standard. We define X to be T-regular if ¥ —

% implies cl,, F — x; AX, the topological modification of X, is the space
consisting of the set X equipped with the finest topology coarser than the
convergence structure of X. A subset A is AX-closed iff A = cly A. A T-
regular space is clearly regular, and the two versions of regularity are equiv-
alent if X is a topological space. Some examples are given in the next sec-
tion of important classes of T-regular spaces. Like regularity, T-regularity
is productive and hereditary.

A T-regular space will be called T-regular-closed if X is a closed sub-
set of any T-regular space in which it can be embedded. A compact T-regu-
lar space is obviously T-regular-closed; [4, Example 3.10] describes a T-
regular-closed space which is not compact. A study of T-regular~closed
spaces is given in $3; we show, among other things, that a continuous func-
tion from a T-regular-closed space onto a T-regular space is closed. S4 is

concerned with embedding T-regular spaces in T-regular-closed spaces.

2, Examples. The following classes of spaces are shown to be T-reg-
ular: c-embedded spaces, locally compact regular spaces, and lattices with
order convergence.

Let X be a space, C_(X) the set of continuous real-valued functions on
X with the coarsest convergence structure (called continuous convergence)
relative to which the natural map w: CC(X) x X — R, defined by w(f, x) =
(%), is continuous. (R denotes the real line with its usual topology.) X is
c-embedded if the evaluation map i: X — CCCC(X), defined by i(xXf) = f(x),
all { € C(X), is an embedding. Feldman [2] has proved that all c-embedded
spaces are T-regular,

A convergence space X is said to be locally compact if each convergent

filter contains a compact set,
Proposition 2.1. A locally compact regular space X is T-regular.

Proof. Let ¥ — x. Then F contains a set A which is compact and
hence closed. As a subspace of X, A is a compact regular space, and it fol-
lows from [7, Lemma 1] that cly and cl,y coincide for subsets of A; thus
cly ¥ = clyx ¥. Since X is regular, clxx ¥ - x
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Pervin and Biesterfeldt [S] have shown that a lattice with order conver-
gence is regular. We will give a shorter proof showing that such a space is
T-regular. We use the filter characterizations of order convergence given by
Ward [9]. Let X be a partially ordered set, § a filter on X. Let L(F)=
{x € X, there exists F € F such that x <y for all y € F}, and let U(F) be
defined dually. F order converges to x if x = inf U(F) = sup L(F). It is
well known that order convergence need not be topological, even in a com-

plete lattice.
Proposition 2.2. Order convergence in any lattice X is T-regular.

Proof. Let F order converge to x. Let § be the filter generated by all
sets of the form la, bl = ly:a<y<bl, for ac L&) and b € UF). Since
L) = L&) and U(©) = U(®), it follows immediately that G order converges
to x. Also, sets of the form [a, b] are closed in the interval topology on X
(see [9]), which is known to be coarser than order convergence. Thus clyy ¥
> Q, and so cly, F —x

3. T-regular-closed spaces. Regular-closed topological spaces have
been investigated by a number of mathematicians; for a summary of results
on this topic see [1]. Regularclosed convergence spaces (but not T-regular-
closed spaces) are studied in [4]. Note that the concept of a regular-closed
topological space is not equivalent to that of a topological regular-closed
(or T-regular-closed) convergence space, and the results obtained for conver=~
gence spaces differ in various ways from those for topological spaces,

The proof of Theorem 3.1 is almost identical to that of Theorem 2.10 of

[4] and will therefore be omitted.

Theorem 3.1. A T-regular space X is T-regular-closed iff, for each fil-
ter § on X, clyy F has an adherent point.

Equivalently, a T-regular space X is T-regular-closed iff each maximal

closed filter on X converges.

Corollary 3.2. A closed subspace of a T-regular-closed space is T-reg-

ular-closed.

Theorem 3.3. Let [ be a continuous function from a T-regular-closed

space X onto a T-regular space Y. Then [ is a closed map.

Proof. Let A be aclosed subset of X, y €cly, fA. Then there is an u.f.
¥ on fA suchthat F — y in Y. Let G be an u.f. on X which is finer than
[~1&) V A®, where A°® is the filter of all oversets of A. Since X is
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T-regular-closed, there is an adherent point % of cl,, G. However, since A
is closed, A €cl,, Q, and so x¥ € A. But [(x) is an adherent point of cl,, 5,
and so f(x) =y, since clM, ¥ — y. Thus y € fA.

We next consider products of T-regular-closed spaces. The example that
follows shows that the property of being T-regular-closed is not productive.

Example 3.4. Let X be a countable infinite set, x a fixed point in X.
Since there are 2° free u.f.’s on each infinite subset of X (c the cardinality
of the real line) and only ¢ subsets of X, we can assign to each infinite sub-
set A of X two distinct free u.f.’s, ?A and QA which contain A such that
Fo#Fg if B£A and F, # Gy for all infinite subsets B of X. Let X, be
the set X with the finest convergence structure such that ?A —x in X,
for each infinite subset A. Let X, be the set X with the finest convergence
structure such that QA — x in X, for each infinite subset A.

The spaces X, and X, are clearly T-regular-closed by Theorem 3.1.
However, no free u.f. which contains the diagonal in the product space X,

x X, can converge, and so X; x X, is not T-regular-closed.

Theorem 3.5. If X, and X, are T-regular-closed, then X, x X, is T-

regular-closed iff both projection maps are closed.

Proof. The condition is necessary by Theorem 3. 3. Conversely, let ¥
be afilter on Y = X, x X,; we must show that cl,, ¥ has an adherent point.
Since the first projection map P, is a closed map, P cl, ¥ = cl)‘x P C‘f
and by hypothesis there is a filter § finer than P 1€y F such that 9 — x,
for some x € Xl' Hence, H= (F’1 clw(1 Q)VCIAY ¥ is a filter on Y, and
clyy H =K. since the second projection map P, is closed, CIAX P }( =
P }( Let X be an u.f. finer than P }( such that X — y, for some y € X,.
Then Hv P37 K = }(l is a filter on Y. Also, P }( > Clxx G, and so P }(
—x in Xl' Similarly, P ]‘( >K and so P }( — y in XZ' Hence, }( -
(x, y) in Y, and so (x, y) is adherent to cl,, 3:

Lemma 3.6. If X, is compact regular and X, is T-regular-closed, then
the product is T-regular-closed.

Proof. It is easy to see that the second projection map P, is closed.
Let § be a filteron Y = X, x X,« By hypothesis, Clxx p 3" has an adher-
ent point y. Hence there is a fxlter G finer that cl,u(2 szf Pycl,y ¥, and
] converges in X, to y. Let H be an u.f. on Y finer than Py 1(g)Vcl ¥
Then P }( — X, for some x € X,, and P }( —y in X,, so that (x, y) is an
adherent point of cl,, 5.
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Theorem 3.7. If both X, and X, are locally compact and T-regular-
closed, then X, x X, is T-regular-closed.

Proof. It is sufficient, by the preceding theorem, to prove that the pro-
jection maps P, and P, are closed. To show that P, is closed, let B be
closedin Y = X1 X XZ’ and let x € clx1 PIB' Then there is an u.f.  on
PB which converges to x in X, and contains a compact set A. By Lemma
3.6, A x X2 is T-regular-closed. Also, B,=Bn (A x X2) is a closed set,
Hence, § = (Pflcl,‘xl F)VB] is such that cl,, § =G, and since A x X,
belongs to G, © has an adherent point (x, b). Hence x € Picly B, C
P,cly B, and so P, is a closed map.

For regular-closed topological spaces, Corollary 3.2 and Theorem 3.3
are known to be false, and Lemma 3.6 and Theorem 3.7 are known to be true.
The question of whether a product of regular-closed topological spaces is
regular-closed is an unsolved problem. We do not know whether or not Theo-

rem 3.5 is valid for regular-closed topological spaces.
4. Embedding theorems.

Theorem 4.1. Each T-regular space X can be embedded in a T-regular-

closed space X .

Proof. Assume that X is not T-regular-closed. Let y be a point not in
X, and let X, = X U {y}; let X, be the set X Uiy}, equipped with the finest
convergence structure satisfying the following conditions: F— x in X, for
x £y, iff ¥ contains X and the restriction of J to X converges to x in X;
F—y iff T>y"'ANG, where § is a filter containing X such that cl,, ]
has no adherent point in X. It is easy to verify that X, is T-regular, and
that X is a subspace of X,. Let ¥ be a filter on X If F=y,then y is
adherent to y. Otherwise, F has a restriction .Cfl to X. If cly 51 does
not have an adherent point in X, then by the construction of X,, y is adher-
ent to CIAXI F. Thus, by Theorem 3.1, X, is T-regular-closed. Finally, the
assumption that X is not T-regular-closed guarantees that X is dense in X,.

We shall now consider the problem of finding a class of T-regular spaces
in which each member has a T-regular-closed extension with universal prop-
erty. Let X be a T-regular space such that AX is a completely regular (in-
cluding Hausdorff) topological space. Let Y = BAX denote the Stone-Cech
compactification of AX; let ¢ be the embedding map from AX into Y. Define
X* to be the set Y, equipped with the finest convergence structure satisfy-
ing the following conditions: (1) If F is a filter on X* containing $X, then
cl, F — x in X* whenever ¢~ 'F — ¢~ 1x in X; (2) If § is an u.f. on x*
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which contains ¢X and ¢~ 1{3 fails to AX-converge, then cly g converges

in X to the same point to which it converges in Y.

Theorem 4.2. If X is a T-regular space and AX is completely regular,
then X* is T-regular and the function ¢: X — X* is a dense embedding.
Furthermore, if f: X — Z is a continuous map into a compact regular space

Z, then [ bhas a unique continuous extension ffx* — z.

Proof. First note that X* is finer than Y; from this fact and the construc-
tion of X* it is clear that X* is T-regular. The function ¢ is certainly an
injection. The first condition in the definition of x* guarantees that ¢: X
— X* is continuous; the second guarantees that ¢X is dense in x*. 1 §
is a filter on X* which contains ¢X and § — x in X*, then, by Condition
1, 6> cly ¥, where ¢X €F and ¢~ !'F — ¢~ x in X. Since X is T-regu-
lar, cl.)\x ¢~ F — ¢~ !x in X. Bur ¢~1G> ¢-lclxx. F=clyy ¢~1F, and
so ¢~ 1§ — ¢~ !x in X. Thus ¢! is continuous, and ¢: X — X*isa
dense embedding.

Finally, consider f: X = Z. Then f: AX — AZ is continuous. By {7,
Proposition 1], AZ is a compact Hausdorff topological space. Thus [ has an
extension /*: Y > AZ.Let § - x in X*. Assume first that § > cly ¥,
where ¢~ 1F — ¢~ !x in X. Then [*(F) = (¢~ 1F) — f(¢~ 1¥)=f*x in Z.
Also, cl, *F — f*x in Z, since Z is regular. But f*: Y > A\Z is contin-
uous, and so /*(cly > cl, [*3:. It follows immediately that /*Q — [*x in
Z. Next, assume that @ >cly ¥, where F is an u.f. on X* which contains
@X such that ¢~ ¥ fails to AX-converge, Then ¥ — x in Y, and so /*3"
— /*x in AZ. By [7, Theorem 1), Z and AZ have the same ultrafilter con-
vergence, and so [*F — [* in Z. By regularity of Z, cl, f*F — f*x, and
G2 flcl, F) > cly [*F, which implies /*G — f*x. Thus we have established
that /*: X* — Z is continuous. The uniqueness of the extension is obvious,
and so the proof is complete,

Unfortunately, the conditions imposed on X in Theorem 4.2 are not
enough to insure that x* is T-regular-closed. By adding an additional con-
dition, we obtain the desired T-regular-closed extension.

Theorem 4.3. Let X be a T-regular space such that AX is completely
regular and locally compact. Then (X*, ¢) is a T-regular-closed extension
of X, and each continuous function from X into a compact regular space Z

. . *
has a continuous closed extension to X .

Proof. In view of Theorems 3.3 and 4.2, it remains only to show that x*

is T-regular-closed. Since AX is locally compact, AX is an open subspace
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of Y = BAX. Thus no u.f. on Y - ¢X can converge in Y to a point in ¢X.

If § isan u.f. on X* - éX, then § converges relative to Y to some point

z in Y — ¢X. Thus there is an u.f. H on éX such that { — z in Y, and

G > cl, H. From the definition of X*, Condition 2, § — z in X*, These re-
sults lead us to conclude that X* and Y have the same u.f. convergence
relative to u.f.’s which contain Y ~ ¢X. Furthermore, if Q — x in Y and

¢X €, then ¢-1Q — xin AX, and so § — x in AX*, Combining these facts,
we arrive at the conclusion that Y and AX* have the same u.f. convergence,
and so AX™ is compact. Thus, AX* =Y.

To show that X" is T-regular-closed, it is sufficient to show that every
maximal closed filter (relative to X*) converges. By the preceding paragraph,
the maximal closed filters relative to X* are the same as the maximal closed
filters relative to Y, and the latter are fixed, since Y is compact. Thus x*

is T-regular-closed, and the proof is complete.

Theorem 4.4. If X has a regular compactification and AX is locally com-
pact, then X* coincides with the regular Stone-Cech compactification of X
described in [7].

Proof. From [7, Theorem 1], X is T-regular and AX is completely regu-
lar., In the proof of the preceding theorem, it is shown that X* and Y have
the same convergence for u.f.’s containing Y ~ ¢X. By taking this fact into
account and comparing the respective constructions, one is led to the de-
sired conclusion.

Inl8, §3], a space X, is constructed which is shown to be locally com-
pact, c-embedded, and have a completely regular topological modification.
However AX is not locally compact, and it can be shown that X: is not
T-regularclosed. On the other hand, a simple alteration of this example leads
to a space X satisfying the conditions of Theorem 4.3 with the property that
the closure operator for X has n-distinct iterations, where 7 is an arbitrary
natural number, Therefore, in contrast to the stringent conditions required in
[7] for the existence of a regular compactification, a space can have a T-reg-
ular-closed extension as described in Theorem 4.3 and yet bear little resem-

blence to any topological space.
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