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T-REGULAR-CLOSED CONVERGENCE SPACES

D. C. KENT, G. D. RICHARDSON AND R. J. GAZIK

ABSTRACT.  It is known that a convergence space which has a regular

compactification is almost identical to a completely tegular topological

space.  It is shown that a less restricitive class of convergence spaces have

T-regular-closed extensions with the universal property of the Stone-Cech

compactification.

1.  Introduction.  In [6] one of us showed that each Hausdorff convergence

space has a Hausdorff compactification with an extension property for con-

tinuous functions into compact regular spaces. In [7] two of us showed that

a convergence space has a regular compactification iff the space is regular

and has the same ultrafilter convergence as a completely regular topological

space.  In this paper we obtain a "regular compactification" which has a uni-

versal property like the compactifications of [6] and u] tot a class of con-

vergence spaces (which includes spaces having highly nonidempotent clo-

sure operators) by relinquishing the requirement that the "compactification"

space be compact. Instead, we require that it be T-regular-closed, a concept

resembling, but more general than, compactness.

A convergence space (X, —>) consists of a set  X and a relation   "_,"

between the filters on  X  and the elements of  X, subject to the following

conditions:

(1) x'-. x, all x eX;
ra<f ,   cr       (ú    .       .. (o
(2) J —> x and J < g  implies g —» x;
,   ,  cr . cr
(3) J* —» x implies  S n x   —» x.

For x e X, x' denotes the fixed ultrafilter generated by  ixi; if A  is a non-

empty subset of X, then  A* will denote the filter of all oversets of A.  The

expression   "A —» x"  should be read "the filter .f  converges to the point

x". We will use the abbreviation "u.f." for "ultrafilter".

Throughout the paper, space will mean convergence space.  We will
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usually refer to a space as   "X" rather than "(X, —>)".  A space is Haus-

dorff if each filter converges to at most one point.  All spaces are assumed

to be Hausdorff unless otherwise indicated.

Fischer [3] defined a space  X to be regular if cl^ J —» x whenever J

—• x, where   "cl,,"  is the closure operator for  X  and J"  is a filter on  X.

This definition has become standard.  We define  X to be T-regular it J—►

x implies  cL v J —* x; XX, the topological modification of X, is the space

consisting of the set  X equipped with the finest topology coarser than the

convergence structure of  X.   A subset  A  is ÀX-closed iff A = civ- A.   A  T-

regular space is clearly regular, and the two versions of regularity are equiv-

alent if  X is a topological space. Some examples are given in the next sec-

tion of important classes of T-regular spaces.  Like regularity, T-regularity

is productive and hereditary.

A T-regular space will be called T-regular-closed if  X is a closed sub-

set of any T-regular space in which it can be embedded.  A compact T-regu-

lar space is obviously T-regular-closed; [4, Example 3.10] describes a T-

regular-closed space which is not compact.  A study of T-regular-closed

spaces is given in §3; we show, among other things, that a continuous func-

tion from a T-regular-closed space onto a T-regular space is closed.  §4 is

concerned with embedding T-regular spaces in T-regular-closed spaces.

2.  Examples.  The following classes of spaces are shown to be T-reg-

ular: c-embedded spaces, locally  compact regular spaces, and lattices with

order convergence.

Let  X be a space, C  (X) the set of continuous real-valued functions on

X  with the coarsest convergence structure (called continuous convergence)

relative to which the natural map cú: C  (X) x X —* R, defined by  &)(/, x) =

f(x), is continuous.  (R  denotes the real line with its usual topology.) X is

c-embedded if the evaluation map /: X —» C  C (X), defined by  /(x)(/) = fix),

all / £ C(X), is an embedding.  Feldman [2] has proved that all c-embedded

spaces are T-regular.

A convergence space  X is said to be locally compact if each convergent

filter contains a compact set.

Proposition 2.1.  A locally compact regular space  X is T-regular.

Proof.   Let J  —» x.   Then  J  contains a set A   which is compact and

hence closed.  As a subspace of  X, A  is a compact regular space, and it fol-

lows from [7, Lemma l] that cl^  and  cl^x  coincide for subsets of A; thus

clx J = cL^ J.  Since  X is regular, cl,y J —* x.
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Pervin and Biesterfeldt [5] have shown that a lattice with order conver-

gence is regular.  We will give a shorter proof showing that such a space is

T-regular.  We use the filter characterizations of order convergence given by

Ward [9].  Let X be a partially ordered set, J"  a filter on  X.   Let  L(J") =

ix 6 X, there exists  F e 3 such that x < y fot all y e FÎ, and let  1/(3") be

defined dually. 3  order converges to x  if x = inf Uij) = sup L(j ).  It is

well known that order convergence need not be topological, even in a com-

plete lattice.

Proposition 2.2.   Order convergence in any lattice  X  is T-regular.

Proof.   Let J  order converge to x. Let § be the filter generated by all

sets of the form  la, b] = {y: a < y < b\, fot a e L(5") and  b £ i/(3).  Since

L(§) = L(j) and  t/(§) = (7(3), it follows immediately that §  order converges

to x.   Also, sets of the form   la, b] ate closed in the interval topology on  X

(see [9J), which is known to be coarser than order convergence.  Thus cl,y J

> y, and so  cl^ J —> x.

3.  T-regular-closed spaces.  Regular-closed topological spaces have

been investigated by a number of mathematicians; for a summary of results

on this topic see [lj.   Regular-closed convergence spaces (but not T-regular-

closed spaces) are studied in [4]. Note that the concept of a regular-closed

topological space is not equivalent to that of a topological regular-closed

(or T-regular-closed) convergence space, and the results obtained for conver-

gence spaces differ in various ways from those for topological spaces.

The proof of Theorem 3.1 is almost identical to that of Theorem 2.10 of

[4] and will therefore be omitted.

Theorem 3.1.  A T-regular space  X  is T-regular-closed iff, for each fil-

ter 3  072  X, cl.v J   has an adherent point.

Equivalently, a T-regular space  X is T-regular-closed iff each maximal

closed filter on X converges.

Corollary 3.2. A closed subspace of a T-regular-closed space is T-reg-

ular-closed.

Theorem 3.3.   Let f be a continuous function from a T-regular-closed

space  X onto a T-regular space  Y.    Then f is a closed map.

Proof.  Let A be a closed subset of X, y e cly, /A.  Then there is an u.f.

3 on ¡A  such that 3 —< y in   Y.   Let § be an u.f. on X which is finer than

/_1(3) VA', where  A*  is the filter of all oversets of A.   Since X is
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T-regular-closed, there is an adherent point x  of cl^. [j. However, since  A

is closed, A e cl.v- a, and so x e A.   But /(x) is an adherent point of  cl ^y, 3,

and so fix) = y, since  cl.y, 3 —> y.  Thus y e/A.

We next consider products of T-regular-closed spaces. The example that

follows shows that the property of being T-regular-closed is not productive.

Example 3.4.   Let  X  be a countable infinite set, x a fixed point in  X.

Since there are   2C  free u.f.'s on each infinite subset of X  (c the cardinality

of the real line) and only  c  subsets of X, we can assign to each infinite sub-

set A   of X  two distinct free u.f.'s, 3A   and §^  which contain  A   such that

^A ^    B  lt B 4 A  and 3^ 4 §B  for all infinite subsets  B  of  X.   Let Xj be

the set  X with the finest convergence structure such that  A ¿ —> x in  Xj

for each infinite subset A.   Let X    be the set X with the finest convergence

structure such that C¡A —» x in  X2  fot each infinite subset A.

The spaces X. and X2 ate clearly T-regular-closed by Theorem 3.1.

However, no free u.f. which contains the diagonal in the product space Xj

x X.  can converge, and so Xj x X2  is not T-regular-closed.

Theorem 3.5. // X: and X are T-regular-closed, then X, x X. is T-

regular-closed iff both projection maps are closed.

Proof.   The condition is necessary by Theorem 3.3.  Conversely, let J

be  a filter on   Y = Xj x X2; we must show that  cl^y J  has an adherent point.

Since the first projection map  P.   is a closed map, P.cl^y. 3 = cl^y    P$*

and by hypothesis there is a filter g  finer than   P.cl^y, J   such that tj —> x,

for  some x £ Xy Hence, K = (P^  clxx    §) Vcl,y J   is a filter on   Y, and

cl^y. K = H.  Since the second projection map  P2  is closed, cl^y    P2J\ =

PAli.  Let K be an u.f. finer than  P Ji  such that A —> y, fot some y £ X,.

Then KVPJ  K = Kj  is a filter on   Y.  Also, P,H, > clxx    §, and so   PjK

—»x in  Xj.  Similarly, E2^l - ^> ana- so  ^2^1 —' ^  *n  *2' Hence> K. "~►

(x, y) in   Y, and so  (x, y) is adherent to  cl xy 3.

Lemma 3.6.  // X.   is compact regular and X2   is T-regular-closed, then

the product is T-regular-closed.

Proof.  It is easy to see that the second projection map  P,   is closed.

Let  J   be a filter on   Y = Xj x X2« By hypothesis, clxx    P23 has an adher-

ent point y.  Hence there is a filter g finer that clxx    P'23 = E2clXy ^> and

g converges in X2 to y. Let H be an u.f. on   V finer than  P~ !(§) VclAy, 3.

Then  PjH —♦ x, fot some x e Xj, and  P2K —i y in  X2, so that  (x, y) is an

adherent point of cl.y 3-
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Theorem 3.7.  // both X.   and X2  are locally compact and T-regular-

closed, then  X. x X2   is T-regular-closed.

Proof.  It is sufficient, by the preceding theorem, to prove that the pro-

jection maps   P.   and  P2  are closed.  To show that   P.   is closed, let  B  be

closed in   Y = Xj x X  , and let  x 6 clx    P.S.   Then there is an u.f. J  on

P.ß  which converges to  x in  X,   and contains a compact set  A.   By Lemma

3.6, A x X    is T-regular-closed.  Also, B. = B Ci (Ax X A is a closed set.

Hence, § = (P~  dxx    3) V B*. is such that clxy § = §, and since  A x X2

belongs to  [j, g  has an adherent point  (x, b).   Hence  x £ P.cly B. C

P.cly, B, and so   P,   is a closed map.

For regular-closed topological spaces, Corollary 3.2 and Theorem 3.3

are known to be false, and Lemma 3.6 and Theorem 3.7 are known to be true.

The question of whether a product of regular-closed topological spaces is

regular-closed is an unsolved problem.  We do not know whether or not Theo-

rem 3.5 is valid for regular-closed topological spaces.

A.  Embedding theorems.

Theorem 4.1.  Each T-regular space X can be embedded in a T-regular-

closed space  X..

Proof.   Assume that  X is not T-regular-closed.  Let y  be a point not in

X, and let X, = X U iyl; let Xj  be the set  X U iyi, equipped with the finest

convergence structure satisfying the following conditions: A —» x in  X., for

x 4 y, iff J  contains   X  and the restriction of 3  to  X  converges to X in  X;

3 —» y iff 3 > y" A §, where §  is a filter containing  X  such that  cl^x §

has no adherent point in   X.  It is easy to verify that   X.   is T-regular, and

that X is a subspace of Xj. Let 3 be a filter on  X., If 3 =y , then y is

adherent to y. Otherwise, 3 has a restriction J»  to  X.  If cl^x 3j does

not have an adherent point in  X, then by the construction of  X., y is adher-

ent to cl^x    3. Thus, by Theorem 3.1, X.   is T-regular-closed. Finally, the

assumption that  X  is not T-regular-closed guarantees that  X is dense in  Xj.

We shall now consider the problem of finding a class of T-regular spaces

in which each member has a T-regular-closed extension with universal prop-

erty.  Let  X be a T-regular space such that  AX is a completely regular (in-

cluding Hausdorff) topological space.  Let   V = ßXX denote the Stone-Cech

compactification of AX; let  (f> be the embedding map from  AX into   Y.  Define

X    to be the set   Y, equipped with the finest convergence structure satisfy-

ing the following conditions: (1) If 3 is a filter on X    containing (fix, then

cly, 3 —» x in  X    whenever <p     3 —» tp~  x in X; (2) If § is an u.f. on  X
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which contains  cbX and  (p~  §  fails to AX-converge, then  cl„ § converges

in  X    to the same point to which it converges in   Y.

Theorem 4.2.  // X  is a T-regular space and XX  is completely regular,

then  X     is T-regular and the ¡unction  c/j: X —> X    is a dense embedding.

Furthermore, if f: X —' Z  is a continuous map into a compact regular space

Z, then f has a unique continuous extension f  : X    —> Z.

Proof.   First note that  X    is finer than   Y; from this fact and the construc-

tion of  X    it is clear that  X    is T-regular. The function  (f> is certainly an

injection.  The first condition in the definition of  X    guarantees that  (b: X

—> X    is continuous; the second guarantees that  (fiX is dense in  X  .  If Cj

is a filter on  X    which contains  (pX and g —» x in   X  , then, by Condition

l,[j> cly, J, where (f>X £J and (f>~  J —' (f>~  x in  X.  Since X is T-regu-

lar, clxx <p- l<3f — <p~ lx in  X.  But 4>~ *g > <p~ !clAx. 3 = clxx (p— !3, and

so  (f>~  § —• (p~   x in   X.   Thus  (f>~     is continuous, and  <p: X —» X    isa

dense embedding.

Finally, consider /: X -* Z.  Then /: AX —► AZ  is continuous.  By [7,

Proposition l], AZ  is a compact Hausdorff topological space.  Thus / has an

extension  f : Y --> AZ. Let § —» x in  X  .  Assume first that  y > cly J,

where  tp"1? — (f>~Xx in  X.   Then /*(3) = fich~ *3) -» fi<p~ lx) = f*x in  Z.

Also, cl„ / 3 —' f x in Z, since Z is regular.  But / : Y —» AZ is contin-

uous, and so / (cly 3) > cl2 / 3.  It follows immediately that / g —* f x in

Z.  Next, assume that g > cly 3, where 3 is an u.f. on  X    which contains

4>X such that  (p~  3  fails to AX-converge. Then  J —» x in   Y, and so f J

—► / x in  AZ.   By [7, Theorem l], Z  and  AZ have the same ultrafilter con-

vergence, and so / 3 —» / x in  Z.   By regularity of  Z, clzf  3—> f x, and

/§> AclY 3)> clz /*3, which implies /*§ -*• /*x.   Thus we have established

that f  : X   —» Z is continuous.  The uniqueness of the extension is obvious,

and so the proof is complete.

Unfortunately, the conditions imposed on  X in Theorem 4.2 are not

enough to insure that  X     is T-regular-closed. By adding an additional con-

dition, we obtain the desired T-regular-closed extension.

Theorem 4.3.   Let  X  be a T-regular space such that  XX  is completely

regular and locally compact.   Then  (X , t/j) is a T-regular-closed extension

of X, and each continuous function from X  into a compact regular space  Z

has a continuous closed extension to X .

Proof. In view of Theorems 3.3 and 4.2, it remains only to show that  X

is T-regular-closed. Since AX is locally compact, AX is an open subspace
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of   Y = /SAX.   Thus no u.f. on   Y - cßX can converge in   Y to a point in  (pX.

If g is an u.f. on X   - tpX, then g converges relative to  Y to some point

z in   Y - (f>X.   Thus there is an u.f. K  on  (f>X such that K —» z in   Y, and

g > cly //. From the definition of X , Condition 2, g —» z in  X .  These re-

suits lead us to conclude that  X    and   Y have the same u.f. convergence

relative to u.f.'s which contain   Y — r/jX.  Furthermore, if g —> x  in   Y and

4>X £ g, then (ß~ § —* x in  AX, and so g —* x in  AX . Combining these facts,

we arrive at the conclusion that   Y  and  AX    have the same u.f. convergence,

and so  AX    is compact.  Thus, AX   = Y.

To show that  X    is T-regular-closed, it is sufficient to show that every

maximal closed filter (relative to  X  ) converges.  By the preceding paragraph,

the maximal closed filters relative to X    are the same as the maximal closed

filters relative to   Y, and the latter are fixed, since   Y is compact.  Thus  X

is T-regular-closed, and the proof is complete.

Theorem 4.4.  // X has a regular compactification and XX  is locally com-

pact, then  X    coincides with the regular Stone-Cech compactification of X

described in ll].

Proof.  From [7, Theorem l], X is T-regular and  AX  is completely regu-

1 ar. In the proof of the preceding theorem, it is shown that X    and  Y have

the same convergence for u.f.'s containing   Y - rpX.  By taking this fact into

account and comparing the respective constructions,  one  is  led to the  de-

sired conclusion.

In [8, V3], a space   X    is constructed which is shown to be locally com-

pact, c-embedded, and have a completely regular topological modification.

However AX    is not locally compact, and it can be shown that  X.  is not

T-regular-closed. On the other hand, a simple alteration of this example leads

to a space  X  satisfying the conditions of Theorem 4.3 with the property that

the closure operator for X has 72-distinct iterations, where  72  is an arbitrary

natural number. Therefore, in contrast to the stringent conditions required in

[7] for the existence of a regular compactification, a space can have a T-reg-

ular-closed extension as described in Theorem 4.3 and yet bear little resem-

blence to any topological space.
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