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DISK-LIKE PRODUCTS OF A CONNECTED CONTINUA. 1
CHARLES L. HAGOPIAN

ABSTRACT. A continuum X is A connected if each two of its points
can be joined by a hereditarily decomposable subcontinuum of X. We prove
that continua X and Y are atriodic and hereditarily unicoherent when the
topological product X X Y is disk-like. From this result and a theorem of
R. H. Bing’s it follows that A connected continua X and Y are arc-like if
and only if X x Y is disk-like.

We call a nondegenerate metric space that is both compact and connected
a continuum. Let X and Y be continua and let f be a continuous function
of X onto Y. If € is a positive number such that for each point p of Y, the
diameter of [’l(p) is less than ¢, then [ is said to be an emap of X onto Y.

A continuum X is arc-like if for each €> 0 there is an e¢map of X on-
to an arc. Arc-like continua are sometimes called snake-like or chainable.
This property can be described in terms of simple chains of small open sets
that cover a space [1].

A continuum X is disk-like if for each €> 0 there is an emap of X on-
to a disk (2-cell).

A continuum T is called a triod if it contains a subcontinuum Z such
that T — Z is the union of three nonempty disjoint open sets. When a con-
tinuum does not contain a triod, it is said to be atriodic.

A continuum is decomposable if it is the union of two proper subcontinua.
A continuum is unicoherent provided that if it is the union of two subcontinua
E and F, then E N F is connected. A continuum is called hereditarily de-
composable (hereditarily unicoherent) if all of its subcontinua are decompos-
able (unicoherent).

According to a theorem of R. H. Bing [1, Theorem 111, every atriodic,

hereditarily decomposable, hereditarily unicoherent continuum is arc-like.
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For any two metric spaces (X, ¥) and (Y, ¢), we shall always assume
that the distance between two points p; = (xl. yl) and p, = (xz, yz) of the
topological product X x Y is defined by

P(Pl, p2) = ((l’ll(xl’ xz))2 + (95()’1’ )’2))2)%.

Throughout this paper the closure and the boundary of a given set Z
are denoted by Cl Z and Bd Z respectively.

Theorem 1. Suppose that X and Y are continua and that the topological
product X x Y is disk-like. Then X is atriodic and hereditarily unicoberent.

Proof. Let ¥ and ¢ be distance functions for X and Y, respectively,
and let D be a disk in a 2-sphere s2,

Assume that X contains a triod T. It follows that there exist distinct
continua B, B,, B3, and Z such that T = U?=1 B, and Z=B;N B, for
each 7 and j (1<i<j<3) For i=1, 2, and 3, let p; be a point of
B, - Ui;éi B . Define {y;| 1 <i <6} to be a set consisting of six dis-
tinct points of Y. Let ¢ be the minimum of {$(y,, y )| 1 <i<;j <6}
Ulglp, B, UB)| 1<i<3,1<j<k<3,and j#i#k} Let f bean
eemap of X x Y onto D.

There exist disjoint disks Q,, Q,, and Q3 in $? such that for
i=1,2, and 3, Q. contains f({pz.} x Y) and misses /((B]. v Bk) x Y) when
1<j<k<3 and j#1#k By staying close to the continuum f((B; U B,)x {y,})
we define an arc-segment A, in §2 - U?=1 Q, such that each compo-
nent of O, U O, contains an endpoint of A; and C1A N (U?=2 (T x {yi}))
= &. Define A, to be an arc-segment in §%2 - U3=1 Qi that stays close to
f((B2 U 33) X {yZ}) such that Cl A, meets Q, and Q; and misses Cl 4, U
U?=3 (T x {yi}). Let A; be an arc-segment in s%- U?___l Q, near
f((Byu B3)x ly;}) such that Cl A, meets Q, and Q, and misses
cua; v ANV, AT x by D).

Note that U?:l A, U Q. has exactly two complementary domains in s2.
Hence there exists a complementary domain U of U?=1 Ai V] Qi in $% that
contains two elements of {f(Z x {yi})|4 <i <6}. Assume without loss of gen-
erality that f(Z x {yé), and f(Z x {ysi) are in U. Since Z is a continuum and
(T % ¥y4, yS}) N (U?=1 Ai)= @, and since for each point y of Y and
i=1, 2, and 3, /(Bi <y n Qi #£ @, it follows that there exist continua H
and K in f(T x{y, )N Cl U and /(T x tys}) N C1 U, respectively, such that
for i =1, 2, and 3,HﬂBin;4¢;4KﬂBin. But since H and K are

disjoint, this is a contradiction [6, Theorem 76, p. 220}, Hence X is atriodic.
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Assume that X is not hereditarily unicoherent. It follows that in X there
exist continua E and F and nonempty disjoint closed sets A and B such
that E NF = A U B. Define C; and C, to be open subsets of X such that
ACC,,BCC,, and CI C;NCl C, =@. Define & to be a positive number
less than ¥(C,, C,), Y(E, F - (C, U C,)) and ¥(F, E - (C, UC,).

We first prove that EU F is X. To accomplish this we suppose that
there is a point x of X — (E U F). Let R be a proper subcontinuum of Y.
Let v1 and v, be distinct points of R and let v; be a point of ¥ — R. De-
fine 8’ to be a positive number less than 8, ¥(x, E U F), ¢(v1, ”2) and
#lv;, R). Let g be a 8'-map of X x Y onto D.

Note that the continua g(X x {vl.f) and g(X x {vj.i) are disjoint for each
i and j (1 <i<j<3). Suppose that for i =1, 2, and 3, gl(E U F)x{v })
does not separate g(X x fv D from g(X x {v,}) in §? when 1<j<k<3 and
j£i#k Fori=1 and 2, defme H, to be an arc in s2 -g(EU PR xiv )
that intersects both g(X x {v,}) and g(X x {vl}) (1<j<2and j#i

Let z; and z, be points of A and B respectively. For i =1, 2 and
j =1, 2, define Mij to be

(gl(E N C].) x {vi}) Nngl(F n C].) x {vi})) U (g({z].} x R) N g((E U F) x {vi})).

Note that for j=1 and 2, M, and M,. are closed disjoint subsets of
g(C;x V)= g(E UF) - C)x )

There exist mutually exclusive disks K;,, K;,, K,,, and K,, in 52
such that for each 7 and j, the following conditions are satisfied:
1. The interior of Kij contains Ml.]..
2. Kij does not intersect H; U g(((E UF)- Ci)x Y)u gX x {vk. US})
when 1 <k<2 and k# i

Let E,, E,, Fy, F,, Ry, and R, be disjoint continua in s - g(X x {v3§)
that miss the interior of Uzi‘j=l Ki]. such that for » =1 and 2, E_ is
in g(E x {vni) and meets Bd K ; and Bd K ,, F isin g(Fx{vn}) and
meets Bd K | and Bd an, and R isin g({znfx R) and meets Bd K,, and
Bd K2n

There exist arc-segments I}, I, J;, J,» Ty, and T, in s2- (eX x tv,})

UU:] 1

R, and R,, respectively, such that for » =1 and 2, the following condi-

Ki].) whose closures are disjoint approximating E,, E,, F,, F,,

tions are satisfied:

L Cl1, misses H U g((F~(C; UC,)xY), meets Bd K, and Bd K_,, and
contains a point e of E_-g((C;, uC,)xly ]

2. Cl], misses H Ug((E-(C,U C,))xY),meets Bd K, and Bd K, ,, and
contains a point f, of F_-g((C, U C,)x1iv }.
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3. CIT, misses g(((E U F)-C_)xY) and meets Bd K, and Bd K,

Let V be the complementary domain of U2, (LbuJ,uT, L Ule Kl.,.)
that contains g(X x {v;}). Note that if i and j are distinct positive integers
less than 3, then the continuum g(X x {v,, v;}) U H UK, UK,V U],
misses K].1 UK, Ul U J. It follows that Bd V is a simple closed curve
that contains T, and T, (6, Theorem 28, p. 156]. Consequently one of 1,
I,, J,, and ], does not meet Bd V. Suppose, without loss of generality, that
1} N BdV =g It follows thar U7_, J, uT, uUZ_, Bd K,) contains a
simple closed curve L that separates e, from g(X x {v3i) in S2, Let u be
a point of E - (C, U C,) such that g(z, v,)) = e,. Since gllulx Y) isa
continuum in S% - L that meets e, and g(X x {v3§), we have a contradiction.
Hence for some integer i = 1, 2, or 3, the continuum g((E U F) x {vii) sep-
arates g(X x {vii) from g(X x {v,}) in S? when 1<j<k<3 and j#i#fk

Assume, without loss of generality, that g((E U F) x {v,}) separates
(X x {vlf) from g(X x iv;l) in $2. This assumption contradicts the fact
that g{{x} x Y) is a continuum in $? - g((E U F) x {u,}) that meets both
gX x tv}) and g(X x {v3§)~ It follows that X= E U F.

Next we let » be a 6-map of X x Y onto D. Note that the set A(E x Y)
N h(F x Y) lies in A((C; U C,) x Y) and meets both A(C, x ¥) and
h(C2 x Y). Thus A(E x Y) Nh(F x Y) is not connected. But since X = EU
F and (X x Y) = D, the union of continua AE x Y) and h(F x Y) is D,
which contradicts the fact that D is unicoherent [6, Theorem 22, p. 175

Hence X is hereditarily unicoherent.

Theorem 2. If X is a A connected hereditarily unicoherent continuum,
then X is hereditarily decomposable.

Proof. Assume that X contains an indecomposable continuum I. Let p
and ¢ be points of distinct composants of I [6, Theorem 139, p. 59). Since
X is A connected, there exists a subcontinuum H of X that contains {p, g}
and does not contain I. But since p and ¢ belong to different composants
of I, the set HN I is not connected, which contradicts the assumption that

X is hereditarily unicoherent. Hence X is hereditarily decomposable.

Theorem 3. Suppose that X and Y are continua, that X is A connected,
and that X x Y is disk-like. Then X is arc-like.

Proof. By Theorem 1, X is atriodic and hereditarily unicoherent, Hence
X is hereditarily decomposable (Theorem 2). It follows from Bing’s theorem
[1, Theorem 11] that X is arc-like.
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Theorem 4. Suppose that X and Y are A connected continua. Then X
and Y are arc-like if and only if X x Y is disk-like.

Proof. Theorem 3 indicates that this condition is sufficient. To see that
it is also necessary we note that if f is an €¢/2-map of X onto the unit inter-
val [0, 1] and g is an ¢/2-map of Y onto [0, 1], then the function » of X x Y
onto [0, 11 x [0, 1] defined by A((x, y)) = (f(x), gy)) is an e-map.

A continuum X is said to have the fixed point property if for each con-
tinuous function f of X into itself there is a point x of X such that f(x) =
x. It is known [3] that every A connected nonseparating plane continuum has

the fixed point property.

Theorem 5. If X and Y are A connected continua and X x Y is disk-
like, then X, Y, and X x Y have the fixed point property.

Proof. O. H. Hamilton [5] proved that every arc-like continuum has the
fixed point property. In (2] E. Dyer proved that all products of arc-like con-
tinua have the fixed point property. Hence the theorem follows from Theorem 4.

For another result involving products of A connected continua see [4,
Theorem 51

Question 1, If X and Y are continua and X x Y is disk-like, then must
X be arc-like?

Question 2, Does every disk-like continuum have the fixed point property?

An affirmative answer to Question 2 would imply that every nonseparat-
ing plane continuum has the fixed point property.

Added in proof. S. Mardesié asked Question 2 in [Mappings of inverse
systems, Glasnik Mat.-Fiz. Astronom. 18 (1963), 241-254].
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