DISK-LIKE PRODUCTS OF λ CONNECTED CONTINUA. I
 CHARLES L. HAGOPIAN

Abstract

A continuum X is λ connected if each two of its points can be joined by a hereditarily decomposable subcontinuum of X. We prove that continua X and Y are atriodic and hereditarily unicoherent when the topological product $X \times Y$ is disk-like. From this result and a theorem of R. H. Bing's it follows that λ connected continua X and Y are arc-like if and only if $X \times Y$ is disk-like.

We call a nondegenerate metric space that is both compact and connected a continuum. Let X and Y be continua and let f be a continuous function of X onto Y. If ϵ is a positive number such that for each point p of Y, the diameter of $f^{-1}(p)$ is less than ϵ, then f is said to be an $\epsilon-m a p$ of X onto Y.

A continuum X is arc-like if for each $\epsilon>0$ there is an ϵ-map of X onto an arc. Arc-like continua are sometimes called snake-like or chainable. This property can be described in terms of simple chains of small open sets that cover a space [1].

A continuum X is disk-like if for each $\epsilon>0$ there is an ϵ-map of X onto a disk (2-cell).

A continuum T is called a triod if it contains a subcontinuum Z such that $T-Z$ is the union of three nonempty disjoint open sets. When a continuum does not contain a triod, it is said to be atriodic.

A continuum is decomposable if it is the union of two proper subcontinua. A continuum is unicoherent provided that if it is the union of two subcontinua E and F, then $E \cap F$ is connected. A continuum is called hereditarily decomposable (hereditarily unicoherent) if all of its subcontinua are decomposable (unicoherent).

According to a theorem of R. H. Bing [1, Theorem 11], every atriodic, hereditarily decomposable, hereditarily unicoherent continuum is arc-like.

[^0]For any two metric spaces (X, ψ) and (Y, ϕ), we shall always assume that the distance between two points $p_{1}=\left(x_{1}, y_{1}\right)$ and $p_{2}=\left(x_{2}, y_{2}\right)$ of the topological product $X \times Y$ is defined by

$$
\rho\left(p_{1}, p_{2}\right)=\left(\left(\psi\left(x_{1}, x_{2}\right)\right)^{2}+\left(\phi\left(y_{1}, y_{2}\right)\right)^{2}\right)^{1 / 2} .
$$

Throughout this paper the closure and the boundary of a given set Z are denoted by $\mathrm{Cl} Z$ and $\mathrm{Bd} Z$ respectively.

Theorem l. Suppose that X and Y are continua and that the topological product $X \times Y$ is disk-like. Then X is atriodic and hereditarily unicoherent.

Proof. Let ψ and ϕ be distance functions for X and Y, respectively, and let D be a disk in a 2 -sphere S^{2}.

Assume that X contains a triod T. It follows that there exist distinct continua B_{1}, B_{2}, B_{3}, and Z such that $T=\bigcup_{i=1}^{3} B_{i}$ and $Z=B_{i} \cap B_{j}$ for each i and $j(1 \leq i<j \leq 3)$. For $i=1,2$, and 3 , let p_{i} be a point of $B_{i}-\bigcup_{j \neq i} B_{j}$. Define $\left\{y_{i} \mid 1 \leq i \leq 6\right\}$ to be a set consisting of six distinct points of Y. Let ϵ be the minimum of $\left\{\phi\left(y_{i}, y_{j}\right) \mid 1 \leq i<j \leq 6\right\}$ $\cup\left\{\psi\left(p_{i}, B_{j} \cup B_{k}\right) \mid 1 \leq i \leq 3,1 \leq j<k \leq 3\right.$, and $\left.j \neq i \neq k\right\}$. Let f be an ϵ-map of $X \times Y$ onto D.

There exist disjoint disks Q_{1}, Q_{2}, and Q_{3} in S^{2} such that for $i=1,2$, and $3, Q_{i}$ contains $f\left(\left\{p_{i}\right\} \times Y\right)$ and misses $f\left(\left(B_{j} \cup B_{k}\right) \times Y\right)$ when $1 \leq j<k \leq 3$ and $j \neq i \neq k$. By staying close to the continuum $f\left(\left(B_{1} \cup B_{2}\right) \times\left\{y_{1}\right\}\right)$ we define an arc-segment A_{1} in $S^{2}-\bigcup_{i=1}^{3} Q_{i}$ such that each component of $Q_{1} \cup Q_{2}$ contains an endpoint of A_{1} and $\mathrm{Cl} A_{1} \cap\left(\cup_{i=2}^{6} f\left(T \times\left\{y_{i}\right\}\right)\right)$ $=\varnothing$. Define A_{2} to be an arc-segment in $S^{2}-\bigcup_{i=1}^{3} Q_{i}$ that stays close to $f\left(\left(B_{2} \cup B_{3}\right) \times\left\{y_{2}\right\}\right)$ such that $\mathrm{Cl} A_{2}$ meets Q_{2} and Q_{3} and misses $\mathrm{Cl} A_{1} \cup$ $\bigcup_{i=3}^{6} f\left(T \times\left\{y_{i}\right\}\right)$. Let A_{3} be an arc-segment in $S^{2}-\bigcup_{i=1}^{3} Q_{i}$ near $f\left(\left(B_{1} \cup B_{3}\right) \times\left\{y_{3}\right\}\right)$ such that $\mathrm{Cl} A_{3}$ meets Q_{1} and Q_{3} and misses $\mathrm{Cl}\left(A_{1} \cup A_{2}\right) \cup \bigcup_{i=4}^{6} f\left(T \times\left\{y_{i}\right\}\right)$.

Note that $\bigcup_{i=1}^{3} A_{i} \cup Q_{i}$ has exactly two complementary domains in S^{2}. Hence there exists a complementary domain U of $\bigcup_{i=1}^{3} A_{i} \cup Q_{i}$ in S^{2} that contains two elements of $\left\{f\left(Z \times\left\{y_{i}\right\}\right) \mid 4 \leq i \leq 6\right\}$. Assume without loss of generality that $f\left(Z \times\left\{y_{4}\right\}\right)$ and $f\left(Z \times\left\{y_{5}\right\}\right)$ are in U. Since Z is a continuum and $f\left(T \times\left\{y_{4}, y_{5}\right\}\right) \cap\left(\bigcup_{i=1}^{3} A_{i}\right)=\varnothing$, and since for each point y of Y and $i=1,2$, and $3, f\left(B_{i} \times\{y\}\right) \cap Q_{i} \neq \varnothing$, it follows that there exist continua H and K in $f\left(T \times\left\{y_{4}\right\}\right) \cap \mathrm{Cl} U$ and $f\left(T \times\left\{y_{5}\right\}\right) \cap \mathrm{Cl} U$, respectively, such that for $i=1,2$, and $3, H \cap \mathrm{Bd} Q_{i} \neq \varnothing \neq K \cap \mathrm{Bd} Q_{i}$. But since H and K are disjoint, this is a contradiction [6, Theorem 76, p. 220]. Hence X is atriodic.

Assume that X is not hereditarily unicoherent. It follows that in X there exist continua E and F and nonempty disjoint closed sets A and B such that $E \cap F=A \cup B$. Define C_{1} and C_{2} to be open subsets of X such that $A \subset C_{1}, B \subset C_{2}$, and $\mathrm{Cl} C_{1} \cap C 1 C_{2}=\varnothing$. Define δ to be a positive number less than $\psi\left(C_{1}, C_{2}\right), \psi\left(E, F-\left(C_{1} \cup C_{2}\right)\right)$ and $\psi\left(F, E-\left(C_{1} \cup C_{2}\right)\right)$.

We first prove that $E \cup F$ is X. To accomplish this we suppose that there is a point x of $X-(E \cup F)$. Let R be a proper subcontinuum of Y. Let v_{1} and v_{2} be distinct points of R and let v_{3} be a point of $Y-R$. Define δ^{\prime} to be a positive number less than $\delta, \dot{\psi}(x, E \cup F), \phi\left(v_{1}, v_{2}\right)$, and $\phi\left(v_{3}, R\right)$. Let g be a δ^{\prime}-map of $X \times Y$ onto D.

Note that the continua $g\left(X \times\left\{v_{i}\right\}\right)$ and $g\left(X \times\left\{v_{j}\right\}\right)$ are disjoint for each i and $j(1 \leq i<j \leq 3)$. Suppose that for $i=1,2$, and $3, g\left((E \cup F) \times\left\{v_{i}\right\}\right)$ does not separate $g\left(X \times\left\{v_{j}\right\}\right)$ from $g\left(X \times\left\{v_{k}\right\}\right)$ in S^{2} when $1 \leq j<k \leq 3$ and $j \neq i \neq k$. For $i=1$ and 2 , define H_{i} to be an arc in $S^{2}-g\left((E \cup F) \times\left\{v_{i}\right\}\right)$ that intersects both $g\left(X \times\left\{v_{3}\right\}\right)$ and $g\left(X \times\left\{v_{j}\right\}\right)(1 \leq j \leq 2$ and $j \neq i)$.

Let z_{1} and z_{2} be points of A and B respectively. For $i=1,2$ and $j=1,2$, define $M_{i j}$ to be

$$
\left(g\left(\left(E \cap C_{j}\right) \times\left\{v_{i}\right\}\right) \cap g\left(\left(F \cap C_{j}\right) \times\left\{v_{i}\right\}\right)\right) \cup\left(g\left(\left\{z_{j}\right\} \times R\right) \cap g\left((E \cup F) \times\left\{v_{i}\right\}\right)\right)
$$

Note that for $j=1$ and $2, M_{1 j}$ and $M_{2 j}$ are closed disjoint subsets of $g\left(C_{j} \times Y\right)-g\left(\left((E \cup F)-C_{j}\right) \times Y\right)$.

There exist mutually exclusive disks K_{11}, K_{12}, K_{21}, and K_{22} in S^{2} such that for each i and j, the following conditions are satisfied:

1. The interior of $K_{i j}$ contains $M_{i j}$.
2. $K_{i j}$ does not intersect $H_{i} \cup g\left(\left((E \cup F)-C_{j}\right) \times Y\right) \cup g\left(X \times\left\{v_{k}, v_{3}\right\}\right)$ when $1 \leq k \leq 2$ and $k \neq i$.

Let $E_{1}, E_{2}, F_{1}, F_{2}, R_{1}$, and R_{2} be disjoint continua in $S^{2}-g\left(X \times\left\{v_{3}\right\}\right)$ that miss the interior of $\bigcup_{i, j=1}^{2} K_{i j}$ such that for $n=1$ and $2, E_{n}$ is in $g\left(E \times\left\{v_{n}\right\}\right)$ and meets $\operatorname{Bd} K_{n 1}$ and $\operatorname{Bd} K_{n 2}, F_{n}$ is in $g\left(F \times\left\{v_{n}\right\}\right)$ and meets $\mathrm{Bd} K_{n 1}$ and $\mathrm{Bd} K_{n 2}$, and R_{n} is in $g\left(\left\{z_{n}\right\} \times R\right)$ and meets $\mathrm{Bd} K_{1 n}$ and Bd $K_{2 n}$.

There exist arc-segments $I_{1}, I_{2}, J_{1}, J_{2}, T_{1}$, and T_{2} in $S^{2}-\left(g\left(X \times\left\{v_{3}\right\}\right)\right.$ $\cup \bigcup_{i, j=1}^{2} K_{i j}$) whose closures are disjoint approximating $E_{1}, E_{2}, F_{1}, F_{2}$, R_{1}, and R_{2}, respectively, such that for $n=1$ and 2 , the following conditions are satisfied:

1. $\mathrm{Cl} I_{n}$ misses $H_{n} \cup g\left(\left(F-\left(C_{1} \cup C_{2}\right)\right) \times Y\right)$, meets $\mathrm{Bd} K_{n 1}$ and $\mathrm{Bd} K_{n 2}$, and contains a point e_{n} of $E_{n}-g\left(\left(C_{1} \cup C_{2}\right) \times\left\{v_{n}\right\}\right)$.
2. $\mathrm{Cl} J_{n}$ misses $H_{n} \cup g\left(\left(E-\left(C_{1} \cup C_{2}\right)\right) \times Y\right)$, meets $\mathrm{Bd} K_{n 1}$ and $\mathrm{Bd} K_{n 2}$, and contains a point f_{n} of $F_{n}-g\left(\left(C_{1} \cup C_{2}\right) \times\left\{v_{n}\right\}\right)$.
3. $\mathrm{Cl} T_{n}$ misses $g\left(\left((E \cup F)-C_{n}\right) \times Y\right)$ and meets $\mathrm{Bd} K_{1 n}$ and $\mathrm{Bd} K_{2 n}$.

Let V be the complementary domain of $\bigcup_{i=1}^{2}\left(I_{i} \cup J_{i} \cup T_{i} \cup \bigcup_{j=1}^{2 n} K_{i j}\right)$ that contains $g\left(X \times\left\{v_{3}\right\}\right)$. Note that if i and j are distinct positive integers less than 3 , then the continuum $g\left(X \times\left\{v_{i}, v_{3}\right\}\right) \cup H_{j} \cup K_{i 1} \cup K_{i 2} \cup I_{i} \cup J_{i}$ misses $K_{j 1} \cup K_{j 2} \cup I_{j} \cup J_{j}$. It follows that $\mathrm{Bd} V$ is a simple closed curve that contains T_{1} and T_{2} [6, Theorem 28, p. 156]. Consequently one of I_{1}, I_{2}, J_{1}, and J_{2} does not meet $\mathrm{Bd} V$. Suppose, without loss of generality, that $I_{1} \cap \mathrm{Bd} V=\varnothing$. It follows that $\bigcup_{i=1}^{2}\left(J_{i} \cup T_{i} \cup \bigcup_{j=1}^{2} \mathrm{Bd} K_{i j}\right)$ contains a simple closed curve L that separates e_{1} from $g\left(X \times\left\{v_{3}\right\}\right)$ in S^{2}. Let u be a point of $E-\left(C_{1} \cup C_{2}\right)$ such that $g\left(\left(u, v_{1}\right)\right)=e_{1}$. Since $g(\{u\} \times Y)$ is a continuum in $S^{2}-L$ that meets e_{1} and $g\left(X \times\left\{v_{3}\right\}\right)$, we have a contradiction. Hence for some integer $i=1,2$, or 3 , the continuum $g\left((E \cup F) \times\left\{v_{i}\right\}\right)$ separates $g\left(X \times\left\{v_{j}\right\}\right)$ from $g\left(X \times\left\{v_{k}\right\}\right)$ in S^{2} when $1 \leq j<k \leq 3$ and $j \neq i \neq k$.

Assume, without loss of generality, that $g\left((E \cup F) \times\left\{v_{2}\right\}\right)$ separates $g\left(X \times\left\{v_{1}\right\}\right)$ from $g\left(X \times\left\{v_{3}\right\}\right)$ in S^{2}. This assumption contradicts the fact that $g(\{x\} \times Y)$ is a continuum in $S^{2}-g\left((E \cup F) \times\left\{v_{2}\right\}\right)$ that meets both $g\left(X \times\left\{v_{1}\right\}\right)$ and $g\left(X \times\left\{v_{3}\right\}\right)$. It follows that $X=E \cup F$.

Next we let h be a δ-map of $X \times Y$ onto D. Note that the set $h(E \times Y)$ $\cap h(F \times Y)$ lies in $h\left(\left(C_{1} \cup C_{2}\right) \times Y\right)$ and meets both $h\left(C_{1} \times Y\right)$ and $h\left(C_{2} \times Y\right)$. Thus $h(E \times Y) \cap h(F \times Y)$ is not connected. But since $X=E \cup$ F and $h(X \times Y)=D$, the union of continua $h(E \times Y)$ and $h(F \times Y)$ is D, which contradicts the fact that D is unicoherent [6, Theorem 22, p. 175]. Hence X is hereditarily unicoherent.

Theorem 2. If X is a λ connected hereditarily unicoherent continuum, then X is hereditarily decomposable.

Proof. Assume that X contains an indecomposable continuum I. Let p and q be points of distinct composants of I [6, Theorem 139, p. 59]. Since X is λ connected, there exists a subcontinuum H of X that contains $\{p, q\}$ and does not contain I. But since p and q belong to different composants of I, the set $H \cap I$ is not connected, which contradicts the assumption that X is hereditarily unicoherent. Hence X is hereditarily decomposable.

Theorem 3. Suppose that X and Y are continua, that X is λ connected, and that $X \times Y$ is disk-like. Then X is arc-like.

Proof. By Theorem 1, X is atriodic and hereditarily unicoherent. Hence X is hereditarily decomposable (Theorem 2). It follows from Bing's theorem [1, Theorem 11] that X is arc-like.

Theorem 4. Suppose that X and Y are λ connected continua. Then X and Y are arc-like if and only if $X \times Y$ is disk-like.

Proof. Theorem 3 indicates that this condition is sufficient. To see that it is also necessary we note that if f is an $\epsilon / 2$-map of X onto the unit inter$\operatorname{val}[0,1]$ and g is an $\epsilon / 2-$ map of Y onto $[0,1]$, then the function h of $X \times Y$ onto $[0,1] \times[0,1]$ defined by $h((x, y))=(f(x), g(y))$ is an ϵ-map.

A continuum X is said to have the fixed point property if for each continuous function f of X into itself there is a point x of X such that $f(x)=$ x. It is known [3] that every λ connected nonseparating plane continuum has the fixed point property.

Theorem 5. If X and Y are λ connected continua and $X \times Y$ is disklike, then X, Y, and $X \times Y$ have the fixed point property.

Proof. O. H. Hamilton [5] proved that every arc-like continuum has the fixed point property. In [2] E. Dyer proved that all products of arc-like continua have the fixed point property. Hence the theorem follows from Theorem 4.

For another result involving products of λ connected continua see [4, Theorem 5].

Question 1. If X and Y are continua and $X \times Y$ is disk-like, then must X be arc-like?

Question 2. Does every disk-like continuum have the fixed point property?
An affirmative answer to Question 2 would imply that every nonseparating plane continuum has the fixed point property.

Added in proof. S. Mardesić asked Question 2 in [Mappings of inverse systems, Glasnik Mat.-Fiz. Astronom. 18 (1963), 241-254].

REFERENCES

1. R. H. Bing, Snake-like continua, Duke Math. J. 18 (1951), 653-663. MR 13, 265.
2. E. Dyer, A fixed point theorem, Proc. Amer. Math. Soc. 7 (1956), 662-672. MR 17, 1232.
3. C. L. Hagopian, Another fixed point theorem for plane continua, Proc. Amer. Math. Soc. 31 (1972), 627-628.
4. ———Planar λ connected continua, Proc. Amer. Math. Soc. 39 (1973), 190194. MR 47 \#4230.
5. O. H. Hamilton, A fixed point theorem for pseudo-arcs and certain other metric continua, Proc. Amer. Math. Soc. 2 (1951), 173-174. MR 12, 627.
6. R. L. Moore, Foundations of point set theory, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 13, Amer. Math. Soc., Providence, R. I., 1962. MR 27 \#709.

DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE UNIVERSITY, SACRAMENTO, CALIFORNIA 95819

[^0]: Presented to the Society, November 23, 1974 under the title Fixed point theorems for products and hyperspaces; received by the editors May 28, 1974.

 AMS (MOS) subject classifications (1970). Primary $54 \mathrm{~F} 20,54 \mathrm{C} 10,54 \mathrm{~F} 60,54 \mathrm{H} 25$; Secondary 54C05, 54F55, 57A05, 54B10.

 Key words and phrases. Chainable continua, snake-like continua, disk-like product, arc-like continua, lambda connectivity, hereditarily decomposable continua, fixed point property, arcwise connectivity, triod, unicoherence.

