ON THE EXISTENCE OF TOTALLY INHOMOGENEOUS SPACES¹

BRIAN M. SCOTT

ABSTRACT. A property of *total inhomogeneity* for topological spaces is defined and is shown to be stronger than that of *rigidity* (i.e., of having trivial autohomeomorphism group). It is further shown that compact, rigid, Hausdorff spaces are totally inhomogeneous, and that totally inhomogeneous spaces exist in profusion as dense subspaces of a class of locally compact spaces.

De Groot has studied in [3] the existence of spaces having specified autohomeomorphism groups, and in particular the existence of *rigid* spaces, i.e., spaces admitting only the identity autohomeomorphism. In this note we investigate the existence of spaces satisfying the stronger property of *total inhomogeneity* and the relation of such spaces to rigid spaces.

Definition. A space X is totally inhomogeneous iff given x, $y \in X$ with $x \neq y$, the spaces $X \setminus \{x\}$ and $X \setminus \{y\}$ are not homeomorphic.

Clearly, if X is totally inhomogeneous, then X is rigid. The following example shows that the converse implication fails, even for locally compact metric spaces.

Example. Let G be the directed graph of Figure 1; the automorphism group of G is isomorphic [2] to Z_3 . Let P_4 be as in [3]. (We sketch the construction: Let D be the unit disk, and let a_1, a_2, \ldots be a countable dense subset of the interior of D. Let V_1 be the open r_1 -ball about a_1 , where r_1 is chosen so that $V_1 \subseteq D$, and let F_1 be a 5-bladed "propeller" contained in V_1 and centered at a_1 . Given r_i, V_i, F_i for i < n, let a'_n be the first term of the sequence a_1, a_2, \ldots such that $a'_n \notin \bigcup \{F_i: i < n\}$. Let V_n be the open r_n -ball about a'_n , where $r_n < r_{n-1}/2$ is such that $V_n \subseteq D \setminus \bigcup \{F_i: i < n\}$, and let F_n be an (n + 4)-bladed propeller contained in V_n

Received by the editors May 21, 1973 and, in revised form, April 3, 1974.

Copyright © 1975, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 54G15; Secondary 54B05, 54E45.

Key words and phrases. Rigid space, totally inhomgeneous space, locally compact space.

¹ During the preparation of this paper the author was a National Science Foundation Graduate Fellow.

and centered at a'_n . The space P_4 is $D \setminus \bigcup \{ \operatorname{Int}(F_n): n = 1, 2, \ldots \}$, and is compact, connected, and rigid.) P_4 can be oriented and given "endpoints" by choosing $p_0, p_1 \in P_4 \cap \operatorname{Bdry}(D)$ on a diameter of D. Now replace each edge of G by a copy of P_4 in the appropriate orientation, and call the resulting space Y. The autohomeomorphism group of Y is [3] also isomorphic to Z_3 . Form $X \subseteq Y$ by deleting the center of the 5-bladed propeller of the copy of P_4 replacing the edge v_0v_1 of G, and let x, y be the centers of the 5-bladed propellers of the copies of P_4 replacing v_1v_2 and v_2v_0 . It is not hard to see that X is rigid, metric, and locally compact, but that $X \setminus \{x\}$ is homeomorphic to $X \setminus \{y\}$.

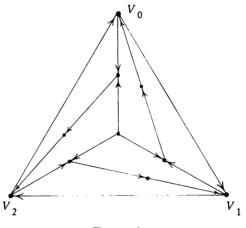


Figure 1

However, we do have

Theorem 1. If X is a compact, rigid, Hausdorff space, then X is totally inhomogeneous.

Proof. Suppose not; suppose $x \neq y$, but $h: X \setminus \{x\} \to X \setminus \{y\}$ is a homeomorphism. Let $\mathcal{F} = \{V \setminus \{x\}: x \in V \text{ and } V \text{ is open}\}$, and let $A = \bigcap \{cl(b(F)): F \in \mathcal{F}\}$. X is a compact and $b(\mathcal{F})$ is a filterbase on X, so $A \neq \emptyset$. Let $a \neq y$, say a = b(z) for some $z \in X \setminus \{x\}$. Pick disjoint open neighborhoods V and W of x and z, respectively, and let $F = V \setminus \{x\} \in \mathcal{F}\}$; then b(W) is open, and $b(W) \cap b(F) = \emptyset$, so $a \notin A$, and $A = \{y\}$. In fact, if V is any neighborhood of y, since $X \setminus V$ is compact, this argument shows that there are $F_1, \ldots, F_n \in \mathcal{F}$ such that for $1 \leq i \leq n$, $\bigcap \{b(F_i)\} \subseteq V$; and $\bigcap \{b(F_i)\} = b(\bigcap \{F_i\}) \in b(\mathcal{F})$, so $b(\mathcal{F})$ converges to y. Hence [1] h extends to a 1-1, continuous map of X onto X which, X being compact Hausdorff, is a homeomorphism.

Totally inhomogeneous spaces exist in profusion. Guaranteeing this is

Theorem 2. Let κ be an infinite cardinal, and let $\lambda = 2^{\kappa}$. Let (X, U) be a compact Hausdorff space of cardinality λ such that if $V \in U$ and $V \neq \emptyset$, then $|V| = \lambda$, and suppose that X has a basis of cardinality κ . Then there are subspaces R_{α} , $\alpha < \lambda$, each totally inhomogeneous, dense in X, and of cardinality λ , which are pairwise disjoint and pairwise nonhomeomorphic.

Proof. Call $A \subseteq X$ a κ - G_{δ} (resp. κ - F_{σ}) set iff A is the intersection (resp. union) of κ open (resp. closed) sets in X. Let $\mathcal{C} = \{f: f \text{ is continu-} ous, dom <math>f \subseteq X$, and ran $f \subseteq X\}$. Say $f \in \mathcal{C}$ is a displacement iff for some $A \subseteq \text{dom } f, f(A) \cap A = \emptyset$ and $|f(A)| = \lambda$, and let $\mathcal{C}_0 = \{f \in \mathcal{C} : f \text{ is a displace-} ment and dom f is a <math>\kappa$ - G_{δ} set}. Since there are only $\lambda \kappa$ - G_{δ} subsets of X, each of which has a dense subset of cardinality κ , it follows that $|\mathcal{C}_0| = \lambda$. An immediate consequence of Theorem 2.2 of [4] is

Lemma 1. If $f \in \mathcal{C}$ is a displacement, then there is $g \in \mathcal{C}_0$ such that $f = g \restriction \text{dom } f$.

We are now in a position to construct the R_{a} 's.

Index $\mathcal{C}_0 = \{f_\alpha : \alpha < \lambda\}, \ K = \{K \subseteq X : K \text{ is compact and } |K| = \lambda\} = \{K_\alpha : \alpha < \lambda\}.$ Let $T = \{t_\alpha : \alpha < \lambda\}$ be an enumeration of $\lambda \times \lambda \times \lambda$. Finally, let $\mathfrak{U} = \{U_\alpha : \alpha < \lambda\}$ enumerate \mathfrak{U} .

If points, p_{α} , q_{α} , $k_{\alpha} \in X$ have already been chosen for $\alpha < \gamma < \lambda$, suppose that $t_{\gamma} = \langle \delta, \xi, \eta \rangle$, and choose p_{γ} , q_{γ} , $k_{\gamma} \in X$ distinct from all p_{α} , q_{α} , k_{α} for $\alpha < \gamma$ as follows: pick $p_{\gamma} \in \text{dom } f_{\delta}$ such that $f_{\delta}(p_{\gamma}) \neq p_{\gamma}$ and, if possible, such that $p_{\gamma} \in U_{\xi}$ (if every point of $U_{\xi} \cap \{x \in \text{dom } f_{\delta} : f_{\delta}(x) \neq x\}$ has already been chosen, we drop the requirement that $p_{\gamma} \in U_{\xi}$); let $q_{\gamma} = f_{\delta}(p_{\gamma})$, and pick $k_{\gamma} \in K_{\delta}$ distinct from p_{γ} and q_{γ} . This is always possible for $\gamma < \lambda$, since $f_{\delta} \in \mathcal{C}_{0}$ and $|K_{\delta}| = \lambda$.

Now, for $\alpha < \lambda$, let $R_{\alpha} = \{p_{\gamma} : t_{\gamma} = \langle \delta, \eta, \alpha \rangle$ for some $\delta, \eta < \lambda \} \cup \{k_{\gamma} : t_{\gamma} = \langle \delta, \eta, \alpha \rangle$ for some $\delta, \eta < \lambda \}$; clearly $|R_{\alpha}| = \lambda$. Also, if $V \in \mathbb{U}$, then there is $W \in \mathbb{U}$ such that $\emptyset \neq W \subseteq \overline{W} \subseteq V$; and $\overline{W} \in K$, so $|V \cap R_{\alpha}| \ge |\overline{W} \cap R_{\alpha}| = \lambda$ for any $\alpha < \lambda$. It follows immediately that the R_{α} are pairwise disjoint, dense subsets of X. To show that they are pairwise nonhomeomorphic and totally inhomogeneous, we actually prove more: if $V, W \in \mathbb{U}$ are such that $\emptyset \neq V \cap R_{\alpha} \neq W \cap R_{\beta} \neq \emptyset$, then $V \cap R_{\alpha}$ and $W \cap R_{\beta}$ are not homeomorphic. For if $h: V \cap R_{\alpha} \to W \cap R_{\beta}$ is a homeomorphism, choose $x \in (V \cap R_{\alpha}) \setminus (W \cap R_{\beta})$ [if $V \cap R_{\alpha} \subseteq W \cap R_{\beta}$, consider h^{-1} , and choose $x \in (V \cap R_{\alpha}) \setminus (W \cap R_{\beta})$ [if $V \cap R_{\alpha} \subseteq W \cap R_{\beta}$, consider h^{-1} , and choose $x \in (V \cap R_{\alpha}) \setminus (W \cap R_{\beta})$ [if $V \cap R_{\alpha} \subseteq W \cap R_{\beta}$, consider h^{-1} .

 $(W \cap R_{\beta}) \setminus (V \cap R_{\alpha})]$; then $h(x) \neq x$, so there are disjoint $U, G \in U$ such that $x \in U \subseteq V$, $h(x) \in G \subseteq W$, and $h(U \cap R_{\alpha}) = G \cap R_{\beta}$. Note that $|G \cap R_{\beta}| = \lambda$, so h is a displacement, and for some $f_{\gamma} \in \mathcal{C}_{0}$, $h = f_{\gamma} \upharpoonright (V \cap R_{\alpha})$. Also, for some $\delta < \lambda, U = U_{\delta}$. Let $\eta < \lambda$ be such that $t_{\eta} = \langle \gamma, \delta, \alpha \rangle$; then $|U \cap \{y \in \text{dom } f_{\gamma} : f_{\gamma}(y) \neq y\}| = \lambda$, so $p_{\eta} \in R_{\alpha} \cap U_{\delta} \subseteq R_{\alpha} \cap V$, and $h(p_{\eta}) = f_{\gamma}(p_{\eta}) = q_{\eta} \notin R_{\beta}$, a contradiction.

Two corollaries to the proof of Theorem 2 are worth noting:

Corollary 1. Theorem 2 still holds if "compact Hausdorff space" is replaced by "locally compact Hausdorff space"; the proof can be carried out in the one-point compactification.

Corollary 2. There are 2^{λ} totally inhomogeneous subspaces of X, each of cardinality λ and dense in X, which are pairwise nonhomeomorphic (but not pairwise disjoint).

Proof. At each stage of the construction choose six points, p_{α}^{i} , q_{α}^{i} , k_{α}^{i} , for $\alpha < \lambda$ and i = 0, 1, such that if $t_{\alpha} = \langle \gamma, \delta, \eta \rangle$, then $q_{\alpha}^{i} = f_{\gamma}(p_{\alpha}^{i}) \neq p_{\alpha}^{i}$, $k_{\alpha}^{i} \in K_{\gamma}$, and, if possible, $p_{\alpha}^{i} \in U_{\delta}$. (As before, all points are chosen to be distinct.) Then for each $\phi: \lambda \to \{0, 1\}$, let $R_{\phi} = \{p_{\alpha}^{\phi(\alpha)}\} \cup \{k_{\alpha}^{\phi(\alpha)}\}$ ($\alpha < \lambda$).

Say a space has property P if no two distinct, nonempty open subsets are homeomorphic: e.g., the R_a 's constructed in the proof of Theorem 2 have property P. They are, however, very nonconstructive. Using far more constructive methods, Lozier [5] produces noncompact, 0-dimensional spaces X^{κ} of any infinite cardinality κ , in which any two distinct points have different values under a topologically invariant, ordinal-valued function which is unchanged by restriction to open subspaces: consequently, X^{κ} has property P. It is, however, not the case that total inhomogeneity implies property P, as is easily seen from the following

Example. Let X_0 be a closed line segment in E^2 of length l, and let x_0 be its midpoint. Form X_1 by attaching a segment of length $\frac{1}{2}$ to x_0 , and let x_1, x_2 , and x_3 be the midpoints of the "arms" of X_1 . Form X_2 by attaching two segments to x_1 , three to x_2 , and four to x_3 in such a way that the new "arms" have length $\leq \frac{1}{4}$ and do not intersect X_1 except at x_1, x_2 , and x_3 . Continue in this fashion, and let $X = \bigcup \{X_n : n \in \omega\}$. Let Y be a copy of one of the components of $X \setminus \{x_0\}$, and let Z be the disjoint union of X and Y. Clearly Z does not have property P, and it is not hard to see that Z is totally inhomogeneous.

I wish to thank the referee for several valuable suggestions.

REFERENCES

1. J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 33 #1824.

2. R. Frucht, Graphs of degree three with a given abstract group, Canad. J. Math. 1 (1949), 365-378. MR 11, 377.

3. J. de Groot, Groups represented by homeomorphism groups. I, Math. Ann. 138 (1959), 80-102. MR 22 #9959.

4. J. de Groot and R. H. McDowell, Autohomeomorphism groups of 0-dimensional spaces, Compositio Math. 15 (1963), 203-209. MR 27 #4216.

5. F. W. Lozier, A class of compact rigid 0-dimensional spaces, Canad. J. Math. 21 (1969), 817-821. MR 39 #6243.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCON-SIN 53706

Current address: Department of Mathematics, Cleveland State University, Cleveland, Ohio 44115