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CRITICAL POINTS ON CLOSED ELLIPTIC

AFFINE SUBSPACES1'2

ROBERT DELVER

ABSTRACT.    The critical points of a function restricted to the solu-

tion set of a linear elliptic equation are characterized.  An extension of

the Lagrange  multiplier method   is given.   Existence   and the relation to

elliptic eigenvalue problems are discussed.

1.  Introduction.   In this paper, a multiple-integral variational problem

with linear elliptic side condition is treated.

In §2 Banach's closed range theorem is used to derive the equation of

the critical points of a function defined on a Banach space X, restricted to

the pre-image of an element in the range of a  closed linear operator with

closed range.  This leads to an extension of the Lagrange multiplier method.

Let /:  Hl(ü) -R  be the multiple-integral function, and L:  H2m(ü)^

H (Q)  the elliptic operator.  In §3, the closed range property of the closure of

L  in H (fi) is proved, and after that the theory of §2 is applied.  In §4, the re-

sulting critical point equation is analyzed and in §5 the existence of critical

points is discussed.

In this note, earlier results of the writer [3], [4] are strengthened while

the proofs are much simpler.  Also the relation to work of other writers has

become clear.  Besides the relation to L. A. Ljustemik's Banach space ver-

sion of the Lagrange multiplier method there is one to the elliptic eigenvalue

problems studied by F. E. Browder [l].   The critical point equation in the

present note is of the form

(1.1) ]'(u) = XoL,

where / '(u) £ £(3)(L), R), A £ £(H°(Q), R), L  is the closure of L, ®(L) is
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the domain of L.   This equation can be regarded as an elliptic operator eigen-

value problem.  An explicit existence result for an eigenfunction-eigenvalue

pair is given in the application in §5.

The problem studied in this paper arises naturally in the optimal control

at the boundary of systems governed by elliptic partial differential equations.

2.  Abstract theory.   Let X  and  Y  be Banach  spaces,   T:  3)(T) C X —» Y

a closed linear operator such that -ß(T) is dense in X, and the image Jv(T)

is closed  in  Y.   For a given y £ JÍ(T), T~  y = [x £ X:   Tx = y].  Let / be a

given differentiable function from -D(/) C X  into  R   such that -D(/) is open

in X  and T~  y C -D(/).  »l(X, Y) denotes the space of continuous linear func-

tions on X into  Y.  For g   £ X' = £(X, R), zz e X, let (zz, g)x  denote g(cz).

Theorem 2.1.  The function f restricted to T~ly has a critical point at

x £ T~  y  iff there exists aX £ Y    such that

(2.1) ih, f'ix))x = (Th, A>y,   V*ei(T),

Proof. As S(T) is dense in X the adjoint T*: 3)(T*) C Y' -> X' is

well defined. As T is a closed operator with closed range, J\(T ) = Jv(T) ,

by the closed range theorem (see e.g. [12]), where J\(T) = \x £ X:  Tx = 0!.

x  is a critical point of / restricted to  T~  y <=» (A, / (x)) = 0,  VTz e

K(T) «]À£ Y'   such that f'(x) = T*\ ~ (Taz, à) = (h, f'(x)), VA e Î>(T).   D

If À 6 Y'  is such that À o T is continuous on S)(T) then let A S" T de-

note its unique continuous linear extension over X  restricted to JJ(f).

Corollary,   x is a critical point of f restricted to  T~   y  iff there exists

a A £ Y    such that A o T  is continuous on -D(T)  and x  is a critical point

of f - A 3" T.

Proof.   Let x be a critical point of / restricted to  T~  y;  then by The-

orem 2.1, there exists a A e  Y     such that A o T is continuous and (f'(x) -

A o T) • h = 0, \/h £ ®(T).  As S(T) is dense in X it follows that if-X^T)'

vanishes at x.  The converse is trivial.

The Corollary shows the precise relation between the theorem and the

Banach space formulation of the method of Lagrange multipliers, see e.g.

[5].   The theorem reduces to this method if T  is continuous.  If T  is not con-

tinuous the side condition  Tx = y  is not differentiable in which case the

Lagrange multiplier rule, as it was known, cannot be used.

3.  Elliptic variational problems.  In this section the abstract theory will

be used to characterize the critical points of a function defined in a neigh-
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bourhood of a closed elliptic affine subspace restricted to that set.   First

these affine subspaces will be defined.   For simplicity it will be assumed

that the data are smooth.

fî  will always denote an open bounded domain in  R"  with smooth bound-

ary r9fi.   A uniformly strongly elliptic differential polynomial A  of order 2z?z

(see e.g. [6]) is given by

,, n (Azz)(x)=     £     a(x)Dauix),        x £ Q,

|<x| < 2tzz

for all zz e C2m(Q,).  aa £ C°°(f2), 0 < |a| < 2t72.   For nonnegative integers j

let /j"'(ii) denote the Sobolev space HJ2(Q) or W'2(fi).  For 0 < k < 2m  let L¿

denote the linear operator from H (Q) into H (Q) with domain -^(^k) =

H2m(fl) given by

(3.2) ÍLku)íx) = ÍAu)íx),      x e O,    zz e H2m(Q),

where the derivatives must be taken in  H  ""-sense.

Each of the operators  L,   is closable.  For k = 0, this is shown for ex-

ample in [12],   For 1 < k < 2m  the proof is similar.  Let L,   denote the clo-

sure of L, .
k

Definition.  A closed elliptic affine subspace is a set Ul , given by

(3.3) Ulf=[u£Cf)ÍL¡):Llu = f],

where  I e [0, ... , 2m\ and / £ S(L,)  are given.

As L    is a closed linear operator, I/, . is a closed affine subspace of

/i'(Q).

Lemma 3.1. ft(Efe) is closed, 0<k<2m, and %(E2m) = ft(Lfe), 0 <

k < 2m.

Proof.  The closing operation of Lk  is defined by:  Lku = v <=>   ^\uj C

H2m  such that s - Hk - lim       u   = u  and s - H° - lira^Au   = v. Hence,

(3.4) K(L?   ) = S(L,   )C---   CÄ(LJc1clT~),2tz7 2t7z 0 v    2tti"

CD ■ 0
so that it suffices to show that Ji(L     ) is closed in H (fî).

It is well known that there exists a finite dimensional subspace P  of

H°(ü) such that Au = f, u £ H2m(Q,)(D H™(ü) is solvable iff / £ PX (see

e.g.  [6, part I, Theorem 14.6, Theorem 17.2]).  Put 0 = %(L2m)(D P  then

J\(L     ) - P   + 0.  As  P    and 0   are closed orthogonal sets .a(L     ) is

closed.   □
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Let a function J:  H   —> R  be given by

(3.5) }(u) =   f   F(x, uíx), Duix), ..., Dluix))dx.

Here F = F(x, £): fi x R —* R is measurable in x and differentiable with

respect to the other variables. D u denotes all derivatives of zz of order k.

Assume that /: H —> R is differentiable in an open neighbourhood of U . ,.

The differentiability can be assured by imposing growth conditions on F as

was done for example in F. E. Browder's paper [2],  In this case

(3i6) ]'iu). w=    ¿2 ÍFau, Daw),

|a|<i

where   ( , )   denotes the H  (Q)  scalar product and

(3.7) Fazz = d^F(x, u.Dlu)/diDau)

As each of the operators L. satisfies the conditions imposed on the

operator T of §2, the abstract theory can be applied. Theorem 2.1 takes

the form:

Theorem 3.1.   zz £ U. . is a critical point of }  restricted to  U; . iff

there exists a X £ (/Y°(fl), R) such that

(3.8) J'iu) ■ w = Ao L,- w,     Ww £ 3)(LZ).

If I = 2m  this result could be obtained from the Lagrange multiplier

method.

Let 72  denote the natural isometry: £(H°(Q), R) —• H°(Q)  and put v =

72(A).  As  C°°(ñ)  is dense in §(L¡), (3.8) is equivalent to

(3.9) J0 ¿1   FauDaipdx = ja   vAipdx,     V^eC-iiï).
|a|</

In [3], [4], a function v £ C2m(Q)  satisfying (3.9) was called a varia-

tional adjoint.  In this case (3.9) was shown to be equivalent to a   boundary

value problem called the variational boundary value problem.   The relation

(3.9) or (3.8) is a generalized version thereof.   The function  v is still

called a variational adjoint.

Application.  Let A = A = the Laplacian in R"  and let /:  Hl(Q) —* R

be given by /(zz) = VtC^u, Vzz)  where V = (3/dXy, . . . , d/dx ) (Dirichlet

integral).  / is a given element of H (iî).  (3.9) takes the form

(3.10) (Vzz, V.» = (v, A<A),     V«A £ C°°(n), some v £ H°ÍÜ).
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Restricting \p  to the harmonic functions and integrating the left-hand

side by parts one obtains

dift
(3.11) f    2-—¿x=0

Jd8      :)„ßn -

here u  £ H (<90) is the trace of zz on dû.  The function dip/dn   can be

chosen  freely  as   long as fdifr/dndx = 0   so that u" is constant a.e., by the

lemma of Dubois-Raymond.

Conversely, if zz £ H (Q) has constant trace on dQ one observes that

(Vzz, Vi//)n = -(zz, Ai/z)0 + (c, dif//dn)dQ = (c - zz, àif/)u,

so that (3.10) is satisfied with v = c - u.

In consequence, the critical set of /  restricted to  U.   , consists pre-

cisely of those elements with constant trace on dO,.

One easily proves that /   assumes its infimum over  U    , in each of the

critical points.

An analogous physical problem occurs if one tries to fix a loaded mem-

brane in a vertical cylinder O x R  along the lateral boundary <9Q x R  in such

a way that the membrane takes on the flattest possible shape (given load and

cylinder), where flatness is measured by the Dirichlet integral.  It happens

that one should fix the membrane along a horizontal curve.

A somewhat weaker form was given in L3J.

4. Analysis of the critical point equation.  In this section some proper-

ties of pairs  zz, v  satisfying (3.9) will be derived.

Lemma 4.1.   Let A  and J  be as in §3, let f £ %(L ¡) <D Hk(Q.) be given

and let u £ Ul       v £ H°(Q,) be such that (3.9) is satisfied, then u £

H2m+k(il), v e'tf?m-2Z+fe(fi)  and v  is a weak solution of
loc     v    " loc v    ' '

(4.1) lAv = [F]u,      xeQ'cQ,    0' C ÍÍ,

where  lA  is the formal adjoint of A and [F]  u £ H2™~2l+k(Q.) is given by

(4.2) LF]u=   Z(-l)la|DaFa«.

|a|</

Proof.   For any u £ U . . there exists a sequence  Szz^! C H  m(ß)  such

that s - H1 - lim    _, zz    = zz  and s - H° - lina       Au    = /.   For each zz   :
72->007        fi 72-»°° tl iï

(4.3) ÍAun, cp) = iun, 'A<p),    VcS e C".

Letting 72 —» »o it follows that zz is a weak solution of Au = f, so that
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u £ H2™+k(ü) by  Friedrich's theorem  (see  for example  [12]).

From (3.9), restricting iff to C°^(fi) and integrating by parts, it follows

that v is a weak solution of (4.1), so that again by Friedrich's theorem v £

H*m-2l+k(Q)
loc v    '

The explicit variational adjoint boundary conditions given in [3], [4],

can only be justified if zz £ H2 (fi), while no reason for this seems to exist

except of course if 1=0.

Lemma 4.2 (F = F(x, zz)). L<?r A, /, /, u, v, be as in Lemma 4.1, zzzz'iA

1=0.  Then (3.9) is equivalent with

(4.4) u£ HfciO),      veH^iSl),

(4.5) lAv = dF/du,       x £ Ü.

Proof.   As A   is uniformly strongly elliptic on 0  there exists an open
_ *\j r\j

bounded domain Q , fl C fi and an extension A of A in fi such that A

is uniformly strongly elliptic on Q . Let dF/du and t/" denote the exten-

sion by zero into ÍÍ     of dF/du and v respectively, then by (3.9):

(4.5) idFÏdu, ch)Q+ = iv, A«p)Q+,    VçS e C~(0+)

so that tf is a weak solution of 'At; = dF/du, and as dF/du £ H°(il ) it

follows that ? £ H2™c(Q+).  Hence zz e H2m(Q.) andas the traces of v on ¿KÎ

all vanish iz £ H2m(Q) (see e.g. [8]).

5.  Remarks on existence.  Since U. , is a closed affine subspace of

W (Í2)  several known methods can be used to obtain existence results.  The

essential reason for working with  L. instead of L.    , in which case the

Lagrange multiplier method could be used directly, is that results like |/(«)|

—» oo  as  ||zz|| —» oo or coercivity of /   over Sobolev spaces of higher order

than the order of differentiation in the integrand of /   cannot be obtained.

(a) Lower semicontinuity.  As  U, . is strongly closed and convex it is

weakly closed.  Thus if:  (1) /   is bounded below on  U;  (2)  \](u)\ —» oo as

||zz||    [ —»ooj u £ U. .; (3) /  is weakly sequentially lower semicontinuous

on  Ul .;  then /  restricted to  Ul . assumes its infimum.  If in addition /

is differentiable then there exists at least one pair  zz £ U, ,, v £ H (Q),

such that (3.9) is satisfied.

Conditions on the integrand of /  ensuring the above properties can be

found for example in F. E. Browder [1], [2]  and in C. B. Morrey [9j.
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(b) The Palais-Smale condition.  As  U, , is a complete Riemannian mani-

fold in H  (iî), Ljusternik-Schnirelman and Morse theory can be applied if /

satisfies the P.S.-condition;   see [10] and [11].  In particular if /  restricted

to U, , is bounded below and satisfies the P.S.-condition then it assumes

its infimum.

Example.   Let A   be given by (3.1) with zzz = 1, let / £ J\(L  ).  Let a bi-

linear form  B  on H  (0) be given by

B(zz, v) =  f I     ¿2       b RDauDßv + buv\dx(5.1) m«. w = j0<     Z.      *aß
■ 1

with  baß £ C(Q), b £ C(iî).   Further, let there exist a positive constant  ß

such that

(5.2) H,|/3| = i
b(x) >ß,   Vx £ a,

then  B(zz, zz) > ß(||zz||    ,)2.  Put }(u) = 8(zz, zz).
H

It is easy to show (see for example J. L. Lions [7, Chapter 1]), that /

is differentiate in a neighbourhood of U . and that (1), (2), (3) of (a) are

satisfied. As / is strictly convex there is only one critical point zz. From

Theorem 3.1 it then follows that there is precisely one u £ U y   . such that

(5.3) 2Biu, xfj) = iv, Ai/,),    Vfe C°°iU),

is solvable for some  v £ H  (Q).
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