A W(Z₂) INVARIANT FOR ORIENTATION PRESERVING INVOLUTIONS

JOHN P. ALEXANDER

ABSTRACT. In this paper we calculate an invariant in $W(Z_2)$, the Witt ring of nonsingular, symmetric Z_2 -inner product spaces, for orientation-preserving involutions on compact, closed, connected 4n-dimensional manifolds M. This invariant with the Atiyah-Singer index theorem uniquely determines the orthogonal representation of Z_2 on $H^{2n}(M; Z)/TOR$. We also give an example to show that this invariant detects actions that the Atiyah-Singer theorem cannot.

In this paper we calculate a torsion invariant for orientation-preserving involutions. This invariant and the Atiyah-Singer-Segal G-signature theorem allow one to compute precisely the element of $W(\mathbf{Z}; \mathbf{Z}_2)$ given by the orthogonal representation of \mathbf{Z}_2 on $H^{2n}(M; \mathbf{Z})/TOR$. This cannot be done with the Atiyah-Singer-Segal theorem alone. We will return to this in the last section.

In [4] Conner and Raymond define an invariant q(T, M) for orientation-preserving actions of \mathbf{Z}_p , p a prime, T a generator of \mathbf{Z}_p , on closed, compact, oriented manifolds M of dimension 4n. Briefly the action of \mathbf{Z}_p on M gives us an orthogonal representation of \mathbf{Z}_p on $H^{2n}(M; \mathbb{Q})$. If we denote by w(T, M) and $\mathrm{sgn}(T, M)$ the rational Witt class and signature, respectively, of the inner product $(x, y) = p(x \cup y, [M])$ on the subspace of fixed vectors then $q(T, M) = w(T, M) - \mathrm{sgn}(T, M) \cdot 1$. In [1] the problem of expressing q(T, M) in terms of fixed point information was solved for p odd. In this paper we compute q(T, M) for p = 2 and give some applications.

First some notation and background. W(R) will always denote the Witt group of nonsingular, symmetric, inner-product spaces over R, R a ring. $W(\mathbf{Z}_2)$ is isomorphic to \mathbf{Z}_2 and the isomorphism is given by taking the rank of the inner product space mod 2. From now on we identify $W(\mathbf{Z}_2)$ and \mathbf{Z}_2 by this isomorphism. If V is a disjoint union of a finite number of closed

Copyright © 1975, American Mathematical Society

Received by the editors June 11, 1974.

AMS (MOS) subject classifications (1970). Primary 57D85; Secondary 10C05.

Key words and phrases. Witt ring, peripheral invariant.

manifolds of possibly different dimensions, let $\chi_i(V)$ be the sum of the Euler characteristics of those components with dimensions equivalent to i mod 4.

Theorem. For p = 2, $q(T, M) \equiv \chi_0(F) \mod 2$ where F is the fixed set of T.

Since $\chi(M) \equiv \chi_0(F) + \chi_2(F) \mod 2$ and the Euler characteristic of any orientable manifold V^{4k+2} is even we get the following application of our theorem.

Corollary. If $q(T, M) \not\equiv \chi(M) \mod 2$ then F has a nonorientable component of dimension equivalent to 2 mod 4.

In $\S 1$ we give the necessary information on spectral sequences to prove the theorem in $\S 2$. $\S 3$ is devoted to a discussion of $W(\mathbf{Z}, \mathbf{Z}_2)$. I would like to thank Pierre Conner, Gary Hamrick, and James Vick for a number of helpful conversations.

1. In [4] it is shown that

$$q(T, M) = \sum_{N} w(T, N) - \operatorname{sgn}(T, N) \cdot 1 - \operatorname{per}(\partial N/T)$$

where N is a normal tube about a component of the fixed set F and w(T, N) is the element of W(Q) given by the obvious inner product on the image of $H^{2n}(N/T, \partial N/T; Q) \to H^{2n}(N/T; Q)$ and $\operatorname{sgn}(T, N)$ is its signature. Since our action preserves orientation we have a bundle $\mathbb{R}P^{2k-1} \to \partial N/T \to F^{2l}$. Let Λ denote the local system of Z-coefficients determined by $w_1(F)$, the first Stiefel-Whitney class. Applying [6] to this fibre bundle we get

Lemma 1. There exists an E₁-spectral sequence whose E₂ term is

$$E_2^{s,t} = \begin{cases} H^s(F; H^t(\mathbb{R}P^{2k-1})), & t \neq 2k-1, \\ H^s(F; \Lambda), & t = 2k-1. \end{cases}$$

There is also a homology spectral sequence whose E²-term is

$$E_{s,t}^{2} = \begin{cases} H_{s}(F; H_{t}(RP^{2k-1})), & t \neq 2k-1, \\ H_{s}(F; \Lambda), & t = 2k-1. \end{cases}$$

(Z-coefficients are assumed whenever the coefficients are not explicitly indicated.) In the homology spectral sequence $E'_{2l,2k-1} = H_{2l}(F; \wedge) \approx \mathbb{Z}$,

 $r \ge 2$, and a generator is a permanent cycle. Denote a generator by $[\partial N/T]$.

Lemma 2.
$$\bigcap [\partial N/T]: E_r^{s,t} \to E_{2l-s,2k-1-t}^r, r \geq 2$$
, is an isomorphism.

Proof. This is proved in [7].

Because $\mathbb{R}P^{2k-1} \xrightarrow{i} \partial N/T \to F$ is covered by $S^{2k-1} \to \partial N \to F$, there exists a cohomology extension of the fibre $\theta \colon H^q(\mathbb{R}P^{2k-1}; \mathbb{Z}_2) \to H^q(\partial N/T; \mathbb{Z}_2)$ so that $i^* \circ \theta$ is the identity on $H^*(\mathbb{R}P^{2k-1}; \mathbb{Z}_2)$. The Leray-Hirsch theorem says

$$H^*(\partial N/T; \mathbb{Z}_2) \approx H^*(F; \mathbb{Z}_2) \otimes H^*(\mathbb{R}P^{2k-1}; \mathbb{Z}_2).$$

If we compare this with the E_2 -term of our integral spectral sequence we get

Lemma 3.
$$E_{\infty}^{s,t} = E_{2}^{s,t}$$
, $0 \le t \le 2k - 1$.

2. We are now in a position to calculate the peripheral invariant on $\partial N/T$. Recall from [1] that this can be done by calculating the element of W(Fin) determined by the linking form on $\partial N/T$. Let $K = \{x \in H^{2n}(\partial N/T) | x = j^*y, y \text{ a torsion class in } H^{2n}(N/T)\}$ and $H = \{x \in H^{2n}(\partial N/T) | x = j^*y, x \text{ a torsion class}\}$. The following diagram will be useful.

$$H^{2n}(N/T) \xrightarrow{j^*} H^{2n}(\partial N/T) \xrightarrow{\delta} H^{2n+1}(N/T, \partial N/T)$$

$$\bigcap [N/T] \downarrow \bigcap [\partial N/T] \downarrow \bigcap [N/T] \downarrow$$

$$H_{2n}(N/T, \partial N/T) \xrightarrow{\partial} H_{2n-1}(\partial N/T) \xrightarrow{j_*} H_{2n-1}(N/T)$$

Lemma 4. $x \in K^{\perp} = \{x | L(x, y) = 0 \text{ for all } y \in K\} \text{ if and only if } x \cap [\partial N/T] \in \ker j_*$.

Proof. $L(j^*y, x) = \langle \beta^{-1}y \cup \delta x, [N/T] \rangle = \langle \beta^{-1}y, \delta x \cap [N/T] \rangle$ where β is the Bockstein in the coefficient sequence $0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$. There is also a nontrivial pairing of the torsion in $H^{2n}(N/T)$ and the torsion in $H_{2n-1}(N/T)$ given by $(x, \eta) \to \langle \beta^{-1}x, \eta \rangle$, $x \in H^{2n}(N/T)$, $\eta \in H_{2n-1}(N/T)$. These two facts show

$$x \in K^{\perp} \Leftrightarrow \delta x \cap [N/T] = 0 \Leftrightarrow x \cap [\partial N/T] \in \ker j_{*}$$

Now $\bigcap [\partial N/T]$: $E_{\infty}^{s,t} \to E_{2l-s,2k-1-t}^{\infty}$ is an isomorphism by Lemma 2 and the kernel of j_* is exactly the subgroup of $H_{2n-1}(\partial N/T)$ filtered by $\{E_{s,2n-1-s}^{\infty}|s<2n-1\}$. So K^{\perp} is exactly the subgroup filtered by

 $\{E_{\infty}^{2n-t,t}|t\leq 2k-1\}$. $K\subseteq K^{\perp}$ and we concentrate on K^{\perp}/K .

Lemma 5. The form restricted to H/K is nonsingular and is equal to $w(T, N) - \text{sgn}(T, N) \cdot 1$.

Proof. In [1] it was shown how to compute the linking form on H/K from the inner-product on

$$L = \text{Image} \{ H^{2n}(N/T, \partial N/T) / \text{TOR} \rightarrow H^{2n}(N/T) / \text{TOR} \}.$$

Using the transfer homomorphism as described in [3] it follows that

$$L^+ = \{x \in H^{2n}(N/T)/\text{TOR} \mid rx \in L, r \in \mathbb{Z}\}$$

is isomorphic to $Hom(L; \mathbb{Z})$. It now follows from [1] that the form on H/K is $w(T, N) - sgn(T, N) \cdot 1$.

To finish our calculation of $per(\partial N/T)$ it is only necessary to calculate the rank of H^{\perp}/K which is isomorphic to K^{\perp}/H . This group is filtered by $E_{\infty}^{2n-t,t} \approx H^{2n-t}(F; H^{t}(\mathbb{R}P^{2k-1}))$ for $0 \le t \le 2k-1$. Since

$$\begin{split} H^{2n-t}(F;\, H^t(\mathbb{R}P^{2k-1})) \approx & \,\, H_{2l+t-2n}(F;\, H_{2k-t-1}(\mathbb{R}P^{2k-1})) \\ \approx & \,\, H^{2l+t-2n}(F;\, H^{2k-t}(\mathbb{R}P^{2k-1})) \end{split}$$

we have $\operatorname{rank}_{Z_2} E_{\infty}^{2n-t,t} = \operatorname{rank}_{Z_2} E^{2l+t-2n,2k-t}$. This shows the rank of K^{\perp}/H is equal to the rank of $E_{\infty}^{2n-k,k} \mod 2$, but $E_{\infty}^{2n-k,k} = H^l(F; H^k(\mathbb{R}P^{2k-1}))$ and therefore

$$\operatorname{rank} K^{\perp}/H = \begin{cases} 0, & k \text{ is odd,} \\ \chi(F) \mod 2, & k \text{ is even.} \end{cases}$$

This finishes the proof.

Proposition.
$$per(\partial N/T) = w(T, N) - sgn(T, N) \cdot 1 - \chi_0(F)$$
.

From this the Theorem in the introduction follows easily because

$$q(T, M) = \sum_{i} \{w(T, N_i) - \text{sgn}(T, N_i) \cdot 1 - \text{per}(\partial N_i/T)\}.$$

3. One consequence of this result has already been described in the introduction. Another application is that q(T, M) and the Atiyah-Singer-Segal G-signature theorem completely determine the orthogonal representation of \mathbb{Z}_2 on $H^{2n}(M; \mathbb{Z})/TOR$. $W(\mathbb{Z}; \mathbb{Z}_2)$ [2] is isomorphic to $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}_2$ as a group. If we introduce powers of $\frac{1}{2}$ then any inner product module

splits into I, the fixed elements, and I^{\perp} its orthogonal summand. We define

$$trs(\langle T, V \rangle) = \langle I \rangle - sgn I \cdot 1, \quad \langle T, V \rangle \in W(\mathbb{Z}; \mathbb{Z}_2).$$

This is a torsion element in $W(\mathbb{Z}(\frac{1}{2}))$.

As a ring $W(\mathbf{Z}; \mathbf{Z}_2)$ can be described as follows. Let (m, n, t) be all triples in $\mathbf{Z} \times \mathbf{Z} \times \mathbf{Z}_2$ with $m \equiv n \mod 2$ with the obvious addition and where multiplication is $(m_1, n_1, t_1) \cdot (m_2, n_2, t_2) = (m_1 m_2, n_1 n_2, n_1 t_2 + n_2 t_1)$. $W(\mathbf{Z}; \mathbf{Z}_2)$ is isomorphic to this ring by the map $(\langle T, V \rangle) \mapsto (\operatorname{sgn} V, \operatorname{sgn} I - \operatorname{sgn} I^{\perp}, \operatorname{trs}(\langle T, V \rangle))$. For an orientation preserving action of \mathbf{Z}_2 on M^{4n} the image of $(T, H^{2n}(M)/TOR)$ is $(\operatorname{sgn} M, \operatorname{sgn} F \cdot F, \operatorname{trs}(T, M))$ where $F \cdot F$ denotes the selfintersection of the fixed set. The first two coordinates are determined by the Atiyah-Singer-Segal theorem or the Hirzebruch theorem on involutions. The last coordinate is determined by q(T, M) and the first two coordinates.

Proposition. $trs(T, M) \equiv q(T, M) + \frac{1}{2}(sgn M + sgn F \cdot F) \mod 2$.

Proof. The proof is a straightforward computation. If l represents the fixed elements in $H^{2n}(M; \mathbb{Z}(\frac{1}{2}))/TOR$ then

$$q(T, M) = \langle 2 \rangle \langle I \rangle - \operatorname{sgn} I \cdot 1 = \langle 2 \rangle \cdot (\langle I \rangle - \operatorname{sgn} I \cdot 1) + \operatorname{sgn} I(\langle 2 \rangle - 1)$$
$$= \langle 2 \rangle \cdot \operatorname{trs}(T, M) \cdot \alpha + \operatorname{sgn} I \cdot \alpha,$$

but $\langle 2 \rangle \alpha = \alpha$ where α represents the form $\langle 2 \rangle - 1$ whose image generates $W(\mathbb{Z}_2)$.

$$\operatorname{sgn} I = \frac{1}{2} (\operatorname{sgn} M + \operatorname{sgn} I - \operatorname{sgn} I^{\perp}) = \frac{1}{2} (\operatorname{sgn} M + \operatorname{sgn} F \cdot F)$$

by the Hirzebruch theorem. This completes the proof.

We now give an example that shows that q(T, M) can detect actions that the Atiyah-Singer theorem cannot. Let $[\tau, CP(2)]$ be $[Z_1, Z_2, Z_3] \mapsto [-Z_1, Z_2, Z_3]$: [c; CP(2)] be $[Z_1, Z_2, Z_3] \mapsto [\overline{Z}_1, \overline{Z}_2, \overline{Z}_3]$ and $[d; CP(1) \times CP(1)]$ the involution given by interchanging factors. Now consider $[\tau; CP(2)] - [c; CP(2)] - [d; CP(1) \times CP(1)]$. The action in the middle dimensional cohomology is given by

$$T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

with respect to the obvious basis. The inner product is

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{pmatrix}.$$

Obviously sgn M=0. A quick check shows sgn $I-\text{sgn }I^{\perp}=0$ also but $\text{trs}(T,M)=\alpha\neq 0$. The results in this section are due to P. Conner.

4. One final comment. The proof in $\S\S1$ and 2 can be generalized to p an odd prime to give the result for q(T, M) announced in [1].

BIBLIOGRAPHY

- 1. J. P. Alexander, G. C. Hamrick and J. W. Vick, Bilinear forms and cyclic group actions, Bull. Amer. Math. Soc. 80 (1974), 730-734.
- 2. J. P. Alexander, P. Conner, G. C. Hamrick and J. W. Vick, Witt classes of integral representations of an abelian p-group, Bull. Amer. Math. Soc. 80 (1974), 1179-1182.
- 3. G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972.
- 4. P. Conner and F. Raymond, A quadratic form on the quotient of a periodic map, Semigroup Forum 7 (1974), 310-333.
- 5. J. Milnor and D. Husemoller, Symmetric bilinear forms, Springer-Verlag, Berlin, 1973.
- 6. J.-P. Serre, Homologie singulière des espaces fibrés. I: La suite spectrale, C. R. Acad. Sci. Paris 231 (1950), 1408-1410. MR 12, 520.
- 7. J. Vick, Poincare duality and Postnikov factors, Rocky Mountain J. Math. 3 (1973).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS, AUSTIN, TEXAS 78712