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JOHN P. ALEXANDER

ABSTRACT. In this paper we calculate an invariant in WÍZ.A), the

Witt ring of nonsingular, symmetric Z  -inner product spaces, for orienta-

tion-preserving involutions on compact, closed, connected 472-dimensional

manifolds M.   This invariant with the Atiyah-Singer index theorem uniquely

determines the orthogonal representation of Z    on H    iM; Z)/TOR.   We

also give an example to show that this invariant detects actions that the

Atiyah-Singer theorem cannot.

In this paper we calculate a torsion invariant for orientation-preserving

involutions.   This invariant and the Atiyah-Singer-Segal G-signature theorem

allow one to compute precisely the element of W(Z; Z   ) given by the orthog-

onal representation  of  Z    on H2n(M; Z)/TOR.   This cannot be done with

the Atiyah-Singer-Segal theorem alone.   We will return to this in the last

section.

In [4] Conner and Raymond define an invariant q(T, M) for orientation-

preserving actions of Z   , p a prime, T a generator of Z   , on closed, com-

pact, oriented manifolds M of dimension 4t2.   Briefly the action of Z    on M

gives us an orthogonal representation of Z    on H n(M; Q).   If we denote by

7^(T, M) and sgn(7', M) the rational Witt class and signature, respectively,

of the inner product  (x, y) = p(x U y, [m]) on the subspace of fixed vectors

then q(T, M) = w(T, M) - sgn(T, M) • 1.   In [l] the problem of expressing

q(T, M) in terms of fixed point information was solved for p odd.   In this

paper we compute  q(T, M) fot p = 2  and give some applications.

First some notation and background.   W(R) will always denote the Witt

group of nonsingular, symmetric, inner-product spaces over R, R a ting.

W(Z2) is isomorphic to Z2  and the isomorphism is given by taking the rank

of the inner product space mod 2.   From now on we identify  W(Z   ) and Z

by this isomorphism.   If V is a disjoint union of a finite number of closed

-
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manifolds of possibly different dimensions, let X,(V) be the sum of the

Euler characteristics of those components with dimensions equivalent to i

mod 4.

Theorem.   For p = 2, q(T, M) = Xr/^ moc' 2 where F is the fixed set

of T.

Since  x(M) = X0(F) + X2(F) mod 2  and the Euler characteristic of any

orientable manifold   V is even we get the following application of our

theorem.

Corollary.   // q(T, M) 2= x(^) m°d 2 then F has a nonorientable com-

ponent of dimension equivalent to 2 mod 4.

In §1 we give the necessary information on spectral sequences to prove

the theorem in §2.   §3 is devoted to a discussion of W(Z, Z   ).   I would

like to thank Pierre Conner, Gary Hamrick, and James Vick for a number of

helpful conversations.

, T        1/1    •        • 1_ 1_1.  In L4J it is shown that

qiT, M) = £ wiT, N) - sgn(T, N) . 1 - petidN/T)
N

where N is a normal tube about a component of the fixed set F and wÇT, N)

is the element of  W(Q) given by the obvious inner product on the image of

H2n(N/T, dN/T; Q) -> H2n(N/T; Q) and sgn(T, N) is its signature.   Since

our action preserves orientation we have a bundle  RP     ~    —► dN/T —► F    .

Let A denote the local system of Z-coefficients determined by w  (F), the

first Stiefel-Whitney class.   Applying [6] to this fibre bundle we get

(HS(F; H'{
Es,t _ I '

US(F;A),

(RP2*-1)),       t42k-l,

Lemma 1.   There exists an E -spectral sequence whose  E     term is

There is also a homology spectral sequence whose E  -term is

t =  Ik —  I.

F2
s,t ~

(Hs(F; H ¿HP2*-1)),       t42k-l,

\h(F;K), t = 2k-  1.

(Z-coefficients are assumed whenever the coefficients are not explicitly

indicated.)   In the homology spectral sequence  Er ¡ ..       = H2¡iF; A) * Z,
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r > 2, and a generator is a permanent cycle.   Denote a generator by IdN/T],

Lemma 2.   l\ldN/T]: Es,t —» E'. , , r > 2, /s an isomorphism.
T Z í — 5, ¿re — J. — £ —

Proof.   This is proved in [7].

Because RP2*"1 -L> dN/T -* F  is covered by S2*-1 -» (9/V — F,

there exists a cohomology extension of the fibre  0: //9(RP     ~   ; Z   ) —►

Hq(dN/T; Z2) so that ¿*° 0 is the identity on //*(RP2fe_1; Z2).   The Leray-

Hirsch theorem says

H*{dN/T; Z2)* //*(F; Z2) ® H*(RP2k~ l ; ZJ.

If we compare this with the E -term of our integral spectral sequence we get

Lemma 3.  Es¿ = E*', 0 < ' < 2k - 1.

2.  We are now in a position to calculate the peripheral invariant on

dN/T.   Recall from [l] that this can be done by calculating the element of

W(Fin) determined by the linking form on  dN/T.   Let   K = {x £ H2"(dN/T)\x =

7*y, y a torsion class in H2n(N/T)\ and H = ix e //2"(<9/V/T)|x = j*y, x a

torsion class}.   The   following diagram will be useful.

H2n(N/T)-!-^ H2nidN/T)-L+H2n + HN/T, dN/T)

C\lN/T] CMdN/T] HIN/T]

H2niN/T,dN/T)T+H2n_lidN/T)-*H2n_liN/T)

Lemma 4.  x £ KL - ix|L(x, y) = 0 for all y £ K\ if   and   only   if   x n

IdN/T] £ ker ;,

.*
Proof.  Li;■   y, x) = (ß~ly u Sx, [/V/T]) = </3-1y,Sx n [/V/T]) where ß

is the Bockstein in the coefficient sequence 0 —» Z —» Q —> Q/Z —» 0.

There is also a nontrivial pairing of the torsion in  H "(/V/T) and the tor-

sion in H2n_x(N/T) given by (x, 77) -»(/3-Ix, 27), x £ H2n(N/T), 27 e

H-_AN/T).   These two facts show

x e KL <=» Sx Pi [N/T] = 0 «=> x n IdN/T] £ ker 7 .    D

Now fltdiV/T]: E^J* —» E°2°l_s 2k_l_t is an isomorphism by Lemma 2

and the kernel of 7* is exactly the subgroup of H    _x(dN/T) filtered by

|E~     _j_s|s < 2» - lj.   So  Kx is exactly   the   subgroup   filtered   by
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{E2^-t''\t< 2k- l\.   KÇ K1 and we concentrate on KL/K.

Lemma 5.   The form restricted to H/K  is nonsingular and is equal to

w(T, N)-sgn(T, N)- 1.

Proof.   In [l] it was shown how to compute the linking form on H/K from

the inner-product on

L = Imageiw2"0V/T, dN/T)/TOR — H2n(N/T)/TOR\.

Using the transfer homomorphism as described in [3] it follows that

L+= ixe //2"(/V/T)/TOR|rxe L, r£ Z\

is isomorphic to Hom(L; Z).   It now follows from [l] that the form on H/K

is w(T, N)- sgn(T, N) • 1.

To finish our calculation of pet(dN/T)  it is only necessary to calculate

the rank of  H^/K which is isomorphic to K^/H.    This group is filtered by

E277-2,2 „ H2n-t(F. W'(Rp2fe-l))for 0< t< 2k- 1.   Since

H2n~l(F; H'(l{P2k-1)) *//,.   ,    ,  (F; H (RP2*-1))
¿I +t— ¿n ¿ft, — t — 1

= H2l-"-2"iF; H2k-tinP2k~1))

we have rank.,  E "~^   = rank-  £ "*     ~ .   This shows the rank ofz2   «. z2

KL/H   is   equal   to   the   rank   of   E^-^mod 2,   but   E2^-*1* =

HliF; Hk(Y{P2k-1)) and therefore

k is odd,
rank

'\iF) m°d 2,       £ is even.

1        f°>
K/W=<

This finishes the proof.

Proposition. per(<9/V/T) = 7//(T, N) - sgn(T, /V) • 1 - X0(E).

From this the Theorem in the introduction follows easily because

q(T, M) = £ MT, N.) - sgn(T, N.) . 1 - per (ÓW./T)}.
2'

3.   One consequence of this result has already been described in the

introduction.   Another application is that q(T, M) and the Atiyah-Singer-

Segal G-signature theorem completely determine the orthogonal representa-

tion of Z2 on H2niM; Z)/TOR.   W(Z; Zp [2] is isomorphic to Z © Z © Z2

as a group.   If we introduce powers of M then any inner product module
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splits into /, the fixed elements, and I1^ its orthogonal summand.   We define

trs «T, V» = (I) - sgn / • 1,       (T, V) £ W(Z; Z2).

This is a torsion element in W(Z(!^)).

As a ring W(Z; Z   ) can be described as follows.   Let  (m, n, t) be all

triples in ZxZxZ    with m = n mod 2 with the obvious addition and where

multiplication is  (772,, 72., t.) • (m2, n2, tA)= (m.m2, n.n2, n.t2 + n2t.).

W(Z; Z  ) is isomorphic to this ring by the map ((T, V)) r-> (sgn V, sgn J —

sgn ¡\ trs((T, V))).   For an orientation preserving action of Z    on M ™ the

image of (T, /72"(M)/TOR) is (sgn M, sgn F • F, trs(T, M)) where F • F

denotes the selfintersection of the fixed set.   The first two coordinates are

determined by the Atiyah-Singer-Segal theorem or the Hirzebruch theorem on

involutions.   The last coordinate is determined by q(T, M) and the first two

coordinates.

Proposition.  trs(T, M) = q(T, M) + %(sgn M + sgn F • F)mod 2.

Proof.   The proof is a straightforward computation.   If / represents the

fixed elements in  H2n(M; Z(1/2))/TOR then

q(T, M) = <2)(/)-sgn /• 1   =(2). «/) - sgn /• l) + sgn /«2>- l)

= (2) • trs (T, M) • a + sgn / • a,

but   (2) a = a where a represents the form (2) - 1 whose image generates

W(Z2).

sgn / = Vi (sgn M + sgn / - sgn I) = M (sgn M + sgn F . F)

by the Hirzebruch theorem.   This completes the proof.

We now give an example that shows that qiT, M) can detect actions

that the Atiyah-Singer theorem cannot.   Let  It, CP(2)] be [Z   , Z   , Z  ]  r-»

[- Zv Z2, Z3]: [c; CP(2)] be [Zj, Zj, Z?] H» [Zj, f 2> Z?] and [2/; CP(1) x

CP(1)] the involution given by interchanging factors.    Now   consider

[r; CP(2)] - [c; CP(2)] - Id; CP(1) x CP(1)].   The action in the middle di-

mensional cohomology is given by

T =

with respect to the obvious basis.   The inner product is
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0       0       (T
-10       0

•o      0      0-1

VO      0-1       0/

Obviously sgn M = 0.   A quick check shows  sgn / - sgn /±= 0 also but

tts(T, M) - a 4 0.   The results in this section are due to P. Conner.

4. One final comment.   The proof in §§1 and 2 can be generalized to p

an odd prime to give the result for  q(T, M) announced in [l].
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