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THE METRIZABLE LINEAR EXTENSIONS OF
METRIZABLE SETS IN TOPOLOGICAL LINEAR SPACES

L. DREWNOWSKI!

ABSTRACT. Suppose a subset X of a Hausdorff [locally convex] topo-
logical linear space (E, 7) is metrizable in its relative topology TIX . It is shown
that if T|X is separable, then there exists a metrizable [locally convex] lin-
ear topology 7, on the subspace V generated by X such that Ty € T|V and
rolX =7|X (Theorem 2). This is related to a recent result of Larman and
Rogers which states that if, in addjtion, X is locally bounded, then T, can
be chosen to be normable (but then not necessarily TO c r|V) (Theorem 1).

It is then observed that TOIX = 7'|X does not mean the coincidence of the cor=-
responding induced uniformities on X. However, this is the case if the invar-
iant uniformity compatible with 7 is metrizable on X and X is convex
(Theorem 4).

Notation. E = (E, 7) denotes a (real or complex) Hausdorff topological
linear space, X a nonempty subset of E, V the linear subspace of E spanned by X.

X is said to be locally bounded if, for each x in X, there is a T-neigh-
bourhood C of the origin such that (x + C) N X is bounded.

If A is a topology on a space containing a set A, then A|A denotes the
topology on A induced by A,

Our purpose is to discuss the following theorem obtained recently by
Larman and Rogers [4], and to simplify slightly its proof. Then we establish

also a few related results.

Theorem 1. Suppose E is locally convex, X locally bounded and 7|X
second countable (= metrizable and separable). Then it is possible to intro-
duce anorm || on V so that 7|X coincides with the relative topology of X
as a subset of the normed space (V, | |)
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Actually, in the original formulation of Theorem 1, X is assumed to con-
tain 0. That this condition is superfluous can be shown, apart from the proof
of this theorem given below, as follows. Suppose Theorem 1 has been proved
in the case 0 € X. Then, for an arbitrary X, choose any %, from X and con-
sider X, = X - x,. Let V be the linear span of X,. Since now 0 € X,
there is anorm | | on 'V which induces 7|X; on X. If x; € V, then V =
V, and we set | 1= Io. If x, ¢ V, then each x € V has a unique repre-
sentation x = v +txg, vy €V, and we set |x| = |yo|, + |t|. In both cases
the norm | | coincides with | |, on V, and since translations are homeo-
morphisms, the topologies on X = X + x, induced by | | and 7 are identical.

As Professor C. A. Rogers explained in a letter dated November 20,
1973: **... A re-examination of the referee’s example (see [4, p. 40]) shows
that he did not actually prove the result we attributed to him. He actually
disproved a stronger version of our Lemma 1 that we had originally used ..."”".

We should note that the proof of Theorem 1 given in [4] is valid only if
E is real,

An analysis of the proof given by Larman and Rogers shows that the fol-
lowing three stages may be distinguished in it:

1% Construction of a metrizable locally convex topology 7, on V such
that 7, Cr|V.

2° Construction of semimetrizable locally convex topology 7, on V such
that 7, C7|V and 7,|X = 7|X.

The topology 7, =7, V 7, on V is metrizable and locally convex, 7, C
7|V and 7,|X = 7|X. Then the last step is

3% Construction of a norm required in Theorem 1 from a sequence of
seminorms | ]n defining 7,.

Moreover, it can be easily observed that in 1° and 2° the local bounded-
ness of X has not been used. This leads to

Theorem 2. Suppose 7|X is second countable. Then (V, r|V) is a con-
tinuous image of a metrizable separable topological space, so that |V is
fully Lindeldf. Hence there is a metrizable linear topology 7, on V such
that 7, C1|V. Moreover, there exists a metrizable linear topology 7o on V
such that 7, C1|V and 7.|X = 7|X. If, in addition, 7 is locally convex, then

also 1, and 7 can be chosen to be locally convex.

Proof. We can and do assume E = V. Let C be a base of open neigh-
bourhoods of 0 in (E, 7), and B a countable base for 7|X.

1°% To prove that 7|E is fully Lindeldf, we proceed as in the proof of
Theorem V.1.1 in [2]. Let K denote the field of scalars of E, and M the
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sum of the metrizable separable spaces K" x X", n € N. Then (E, 7) is the
image of M under the continuous map [ whose restriction to K” x X" is de-
fined by

e, ..., tn), CHPERE > tx.
i=1

Since M is metrizable and separable, (E, 7) is fully Lindeléf. Since E\{0} =
U{E\E: C € C}, there is a countable subfamily @l of C such that n@l =
{0}, We can assume that @l is a base at 0 for a linear topology, 7;, on E.
Evidently, 8 is as required in the theorem.

The existence of 7, can be also proved in the folowing way (cf. [4]).

If Al" ces An are subsets of E, we define
n n

WAL .., A)= U uiX tA:ll<1G=1,...,n),|t]=13.
j=1 i=1

For each finite sequence B,..., B, in B such that the 7-closure of

W(B -» B,) does not contain 0, we choose C in C so that CcN

e
W(By,..., B,)=%. Let C' be the countable subfamily of C obtained in this
way. By adjoining to C' some other members of C (if necessary), we readi-

ly define a countable subfamily Gl of C which will be a base at 0 for a lin-
ear topology, 7,, on E. Evidently 7, is semimetrizable and 7, C7. We shall

show in a moment that 7, is Hausdorff, and so metrizable.

Take any x # O from E. Then we can find linearly independent elements

%ys++05 %, in X such that
n n
x=Y sx,=s 2 tx; s=supls|, t;=s/s
i=1 i=1

Since x; are linearly independent, there exists C in C such that €N

Wi, +C,..., x + C)=%. For each i the set (x;+ C) N X is a neighbour-
hood of x; in (X, 71X), hence there exists B, in B such that x; €B, C
(x,+ C) N X. It follows that

x/s € W(Bl,..., Bn)CW(xl+C....,xn+C)

and CNW(B,..., B)) =g@. Hence for some C, from C' we have N
W(B,,..., B,) =, so that (x/s) £ C,. This proves that 7, is Hausdorff.

2° We can suppose that each member of B can be written as (x + C + C)
N X, , where x is taken from a countable subset of X and C from a countable
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subfamily @2 of C, Clearly, we can also assume @2 to be a base at 0 for a
linear topology, 7,, on E. It is then obvious that 7, is semimetrizable, 7, C
7 and 7,|X = 7|X.

Then the linear topology 7, =7, V 7, (for which the sets C; N C,, C;
€ @i (i =1, 2), form a base at 0) is as required in Theorem 2,

Proof of Theorem 1. In view of Theorem 2, there exists a sequence | |,
of seminorms on V which defines a metrizable locally convex topology 7
on V such that 7, C7|V and 7)|X = 7|X. Since X is locally bounded and
7|X is Lindeldf, we can represent X in the form X = Uc:::l X ,» where each
Xn is open in X, bounded in E, and Xn C X'NI (n € N). One can assume
|¥|, <1 for x € X (n € N). [Otherwise replace | | by m;II o m, =1+
SupHxln: x € X"}.] Then the formula

00

I«l = 30 277«
n=1
defines a norm on V. [For each x €V, |x| <. In fact, x = S X, %, €
X, and for k large enough all x; are in X,. Then for n > k we have |x|n <
2;.’;1 It," = const, hence the series defining |x| converges.]
Let v denote the topology on V determined by | |. Evidently 7o Cv.
Let x,, x € X and x, — x in 7. Then x € X for some m and, since X
is open in X, we can assume that all x, are in X _. It follows that
r
lx—xk|52|x—xk|n+2"+l, r>m, k>1.
n=1
Since |x - xk|n — 0 (k— o) for each =, it is now easy to conclude that
| - x,| — 0.
Thus v|X C7[X = 7|X. Since 7, Cv,also 7¢|X Cv|X.
A similar construction of a norm which induces a given topology on each
member of a sequence of bounded sets can be found in [1]
An analogue of Theorem 2 for groups sounds as follows.

Theorem 2'. Suppose (G, y) is a Hausdorff topological abelian group, A
a subset of G, and H the subgroup generated by A. If y|A is second count-
able, then (H, y|H) is a continuous image of a metrizable separable space,
hence (H, y|H) is fully Lindelsf, and there exists a metrizable group topolo-
8y Vo on H such that y, Cy|H and y |A = y|A.

The only major alteration that should be made in the proof of Theorem 2
is to use spaces (~A)” x A” in place of K" x X" [and sets of the form
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n
Wity oot 3 AL oens A)= D tA,
i=1
where each ¢; is either 1 or -1, instead of W(Al, e An)].
Also, it is seen that part 2° of the proof of Theorem 2 can be easily mod-

ified to yield

Theorem 3. Let I" be a Hausdorff uniformity on a set X and y the to-
pology on X associated with T. If y is second countable (=metrizable and
separable), then there exists a metrizable uniformity Fo on X which is

coarser than T and compatible with y.

In the setting of Theorem 2, y = TOIX = 7|X, and as T, FO we consider
naturally the uniformities induced on X by the invariant uniformities compat-
ible with 7 and 7, respectively. We are going to show that neither T £ T "’
nor ‘" is nonmetrizable’’ can be excluded.

To this aim, consider the example given in [4, pp. 46-48): E = 1%, 7 is
the weak topology o(/%, 1?), and X = {ke : k is a nonzero integer, i € N},
where e, denotes the ith unit vector of I2, Then X is countable and 71X is
discrete, hence second countable, and as 7, we can choose the topology of
coordinate-wise convergence in 1%, Let x = nzen (n € N). Then x, — 0
in 7,, hence the sequence (x,) is 7,-Cauchy. However, it is not 7-Cauchy
because for v = (l/n)n ey We have <x, —x ,v>=n, n €N. Hence the iden-
tity mapping (X, ")) — (X, I') is not uniformly continuous, and so T is not
coarser than [').

Now suppose I' has a countable base. This is equivalent to the assump-
tion that the point 0 of the set Y = X — X has a countable base of neighbour-
hoods in the space (Y, 7|Y). Therefore there is a sequence (v,) in 1? such
that the sets

U =lyeY:yv)l<Lii=1,...,n}

form a countable base at 0 in (Y, T|Y). For each n, let m, be such that

Kf, vl <1l/n fori=1,...,mn {,= € -
Clearly we can assume m; <m,<--+, Let v =3 _, n‘lln. Then for each n,
nf £ U, where U=1{y € Y: |<y, v>| < 1}. Hence none of U, is contained in
the neighbourhood U of 0 in (Y, 7|Y). It follows that I is not metrizable.
Since all nf, are in X, this argument shows also that 7|(X U {0}) does not
have a countable base at 0, hence it is not metrizable. It follows that in the

assertion of Theorem 2, X cannot be replaced by its 7-closure.
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If o is a linear topology, we denote by I'(a) the (unique) uniformity
compatible with a, and by I'(a)]A the corresponding induced uniformity on

a set A.

Theorem 4. Suppose (E, 7) is a Hausdorff locally convex space over
reals and X is a convex subset of E. Let A denote the closed absolutely
convex hull of X and W the linear subspace of E generated by A. If T'(r)|X
is metrizable, then there exists a metrizable locally convex topology p on
W such that pCr|W and T(p)|A = T'(7)|A.

Proof. First observe that we can assume 0 € X. In fact, if 0 ¢ X, we
can replace X by X - x, and argue a little subtler than on p. 324,

Let Y = X - X. Since I'(7)]X is metrizable, there is a sequence (U,), en of
absolutely convex open neighbourhoods of 0 in (E, 7) such that the sets Y
N U, form a base at 0 in (Y, 7]Y). Since we can assume that Un+l + Un+l C
U, (n €N), there exists a locally convex topology v on E for which (U, ) .y
is a base at 0. Evidently v is semimetrizable and v C7, Since X CY and
Y is absolutely convex, A C Y. Also, since Y/2 CA, it is clear that W is
spanned by Y. Now we shall show that the sets Y N U, form a base at 0 in
(Y, 7]Y). Let U be any closed neighbourhood of 0 in (E, 7). Then there is

U, such that YN U CU. Let y € Yyn U,. Then, given a neighbourhood V
of 0in (E, 1), (y + V) NU_ is a -neighbourhood of y, hence there is x in

Y N U, suchthat x €y + V. It follows that y € (Y NU )+ V CU + V. Con-
sequently, y € U. Thus Y NU_CU.

Now it is quite obvious that the topology g = v|W is Hausdorff, hence
metrizable. By Grothendieck’s lemma [3, 21.6(5)], both the identity mapping
(4, T(7)|A) = (A, T(p)|A) and its inverse are uniformly continuous. Hence
[(r)|A = T()|A. This completes the proof.

It is not clear to the author whether Theorem 4 is valid in complex spaces,
as well as whether convexity of X is necessary. The assumption that X is
convex can be omitted if X is compact (see [5, Theorem 5.2], and (4, Theo-

rem 2]), (added in proof) or precompact (see [6, Theorem 1.4]).

REFERENCES

1. A. Alexiewicz and Z. Semadeni, Linear functionals on two-norm spaces, Studia
Math. 17 (1958), 121-140. MR 20 #6644.

2. J. Hoffman-J¢rgensen, The theory of analytic spaces, Various Publications
Series, no. 10, Institute of Mathematics, Rarhus University, Denmark, 1970.

3. G. Kothe, Topologische lineare Rdume. 1, Die Grundlehren der math. Wissen-
schaften, Band 107, Springer-Verlag, Berlin, 1960; English transl., Die Grundlehren



METRIZABLE LINEAR EXTENSIONS OF METRIZABLE SETS 329

der math. Wissenschaften, Band 159, Springer-Verlag, New York, 1969. MR 24
#A411; 40 #1750,

4. D. G. Larman and C. A. Rogers, The normability of metrizable sets, Bull.
London Math..Soc. 5 (1973), 39-48. MR 47 #9217.

5. M. A. Rieffel, The Radon-Nikodym theorem for the Bochner integral, Trans.
Amer. Math. Soc. 131 (1968), 466—487. MR 36 #5297.

6. N. J. Kalton, Some forms of the closed graph theorem, Proc. Cambridge Philos.
Soc. 70 (1971), 401—408. MR 46 #634.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLOR-
IDA 32611

Current address: Institute of Mathematics, A. Mickiewicz University, ul. Matejki
48/49, 60~769 Poznar, Poland



