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THE METRIZABLE LINEAR EXTENSIONS OF

METRIZABLE SETS IN TOPOLOGICAL LINEAR SPACES

L. DREWNOWSKI1

ABSTRACT. Suppose a subset  Ai  of a Hausdorff [locally convex] topo-

logical linear space (E, T) is metrizable in its relative topology   t\X.  It is shown

that if  t\X is separable, then there exists a metrizable [locally convex] lin-

ear topology Tq  on the subspace   V generated by  X such that  r    C r|K and

Tr.\X = T\X  (Theorem 2). This is related to a recent result of Larman and

Rogers which states that if, in addition, A" is locally bounded, then T    can

be chosen to be normable (but then not necessarily  T    c  T\V) (Theorem 1).

It is then observed that  TAX — t\X does not mean the coincidence of the cor-

responding induced uniformities on X. However, this is the case if the invar-

iant uniformity compatible with T is metrizable on  X  and  X is convex

(Theorem 4).

Notation.  E = (E, r) denotes a (real or complex) Hausdorff topological

linear space, X a nonempty subset of E, V the linear subspace of E spanned by X.

X is said to be locally bounded if, for each x in  X, there is a r-neigh-

bourhood C oí the origin such that  ix + C) n X is bounded.

If A is a topology on a space containing a set A, then  A|A  denotes the

topology on  A  induced by  A.

Our purpose is to discuss the following theorem obtained recently by

Larman and Rogers [4], and to simplify slightly its proof.  Then we establish

also a few related results.

Theorem 1.  Suppose  E  is locally convex, X  locally bounded and r\X

second countable  (= metrizable and separable).   Then it is possible to intro-

duce a norm   \ \   on  V so that  r\X coincides with the relative topology of X

as a subset of the normed space  (V,  | |).

Received by the editors March 12, 1974.

AMS (MOS) subject classifications (1970). Primary 46A05, 46B05; Secondary

54E15, 54E35, 22A05.

Key words and phrases.   Topological linear space, induced topology, second

countable topology, metrizable linear topology, norm, induced uniformity, metrizable

uniformity, convex set, absolutely convex hull.

This work was done while the author held a Postdoctoral Fellowship at the Uni-

versity of Florida, on leave from the A. Mickiewicz University, Poznan, Poland.

Copyright © 1975, American Mathematical Society



324 L. DREWNOWSKI

Actually, in the original formulation of Theorem 1, X is assumed to con-

tain 0.  That this condition is superfluous can be shown, apart from the proof

of this theorem given below, as follows. Suppose Theorem 1 has been proved

in the case  0 £ X.   Then, for an arbitrary  X, choose any x.  from  X and con-

sider X    = X — xQ.   Let   V0  be the linear span of  XQ.  Since now  0 £ XQ,

there is a norm   | |Q  on  VQ  which induces  r|XQ  on  XQ.  If xQ £ VQ, then   V =

V.  and we set  | | = |  |Q.  If xQ 4 VQ then each  x e V has a unique repre-

sentation  x = vQ + tx , vQ £ V0, and we set   |x| = \vq\o + V\- In both cases

the norm   |  |   coincides with   | L  on   V„, and since translations are homeo-

morphisms, the topologies on  X = XQ + x.  induced by   |  |   and   f are identical.

As Professor C. A. Rogers explained in a letter dated November 20,

1973: "... A re-examination of the referee's example (see L4, p. 40]) shows

that he did not actually prove the result we attributed to him. He actually

disproved a stronger version of our Lemma 1 that we had originally used ...".

We should note that the proof of Theorem 1 given in L4] is valid only if

E is real.

An analysis of the proof given by Larman and Rogers shows that the fol-

lowing three stages may be distinguished in it:

Io. Construction of a metrizable locally convex topology  r    on   V  such

that  ?l C r\V.

2°.  Construction of semimetrizable locally convex topology   t    on  V such

that r2 C r|V and  r^X = r|X.

The topology  r   = r^ V r2 on   V is metrizable and locally convex,   r   C

r\V and rJX = r|X.  Then the last step is

3°.  Construction of a norm required in Theorem 1 from a sequence of

seminorms   |  |     defining  rQ.

Moreover, it can be easily observed that in Io and 2° the local bounded-

ness of X has not been used.  This leads to

Theorem 2.  Suppose  r\X  is second countable. Then  (V, r\V) is a con-

tinuous image of a metrizable separable topological space, so that  r\V is

fully Lindelöf.   Hence there is a metrizable linear topology  r,   on  V such

that  r   C r\V.   Moreover, there exists a metrizable linear topology  r    on  V

such that rQ C r\V and rQ\X = r|X.   //, 222 addition, r is locally convex, then

also r    and r    can be chosen to be locally convex.

Proof. We can and do assume E = V. Let C be a base of open neigh-

bourhoods of 0 in  (E, r), and % a countable base for r|X.

Io. To prove that r|E is fully Lindelöf, we proceed as in the proof of

Theorem V.l.l in [2],  Let   K denote the field of scalars of E, and  M the
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sum of the metrizable separable spaces Kn x X", n £ N. Then (E, r) is the

image of M under the continuous map / whose restriction to Kn x X" is de-

fined by

/«<!.«,V<«,.*.»'■£ «ft
= 1

Since  M  is metrizable and separable, (E, r) is fully Lindelo'f.  Since  E\J0Î =

UfE\C: C £ (l!, there is a countable subfamily  Cj  of C  such that flCj =

¡OS.  We can assume that  C,   is a base at 0 for a linear topology, r     on  E.

Evidently, r    is as required in the theorem.

The existence of r,  can be also proved in the folowing way (cf. [4]).

If A,, . . . , A     ate subsets of  E, we define
1 n

wu,.An)= u u Œ vvt'zjls» (¿= i. ••-.«)• I'/l-l|-

For each finite sequence  B,, .. . , ß    in  £ such that the z"-closure of

W(B., ..., B  ) does not  contain  0,  we choose   C   in   C   so that   C C\

W(By . . . , B  ) = 0.  Let  c'  be the countable subfamily of C  obtained in this

way. By adjoining to (_' some other members of C. (if necessary), we readi-

ly define a countable subfamily  C j  of  C.  which will be a base at 0 for a lin-

ear topology, r., on  E.   Evidently   r    is semimetrizable and  z", C r, We shall

show in a moment that  z",   is Hausdorff, and so metrizable.

Take any x 4 0 from E. Then we can find linearly independent elements

x,, . . . , x    in  X such that
i n

n n

x=^s.x. = s2jz.x.;        s = sup|s.|,        t. = s ./s.

f-l     Z   Z z = l !

Since  x¿  are linearly independent, there exists  C  in C  such that  C O

W(x j + C, . . . , x   + C) = 0.  For each   i the set  (x. + C) n X is a neighbour-

hood of x. in  (X, 2"|X), hence there exists  B. in ÍB such that x. £ B.C

ix. + C) n X.  It follows that

x/s e W(ß .,..., ß  ) C Wix, + C,_x    + C)
i zz 1 n

and C n W(By . .. , Bn) =0. Hence for some  Cj  from C we have  Cj n

W(ßj,. .., Bn) =0, so that  (x/s) ^ Cj. This proves that z"j  is Hausdorff.

2°. We can suppose that each member of £ can be written as  (x + C + C)

O X, , where  x is taken from a countable subset of  X  and  C from a countable
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subfamily c2 of c. Clearly, we can also assume C2 to be a base at 0 for a

linear topology, r2, on E. It is then obvious that ^ is semimetrizable, ?"2 C

T and  r2\X= r\X.

Then the linear topology  ^ = f, V r2  (for which the sets  Cj nCj, C\

e (E    (z' = 1, 2), form a base at 0) is as required in Theorem 2.

Proof of Theorem 1.  In view of Theorem 2, there exists a sequence   |  I

of seminorms on   V  which defines a metrizable locally convex topology   t

on  V such that r   C r\V and  r0|X = r|X.  Since X is locally bounded and

r|X is Lindelöf, we can represent  X in the form  X = \J  _. X  , where each

X    is open in  X, bounded in  E, and X   C X     ,   (22 e N). One can assume
n r ' ' n n + l

|x|    < 1  for x e X    (22 e N).  [Otherwise replace   I        by  m~   I  I   , 777    = 1 +
1      'n   — 72 r '     '72        ' 72       '    '72 72

supilxl   : x £ X  ,.] Then the formular     '     '72 72

1*1 =E 2~n\x\n
72 = 1

defines a norm on   V.   [For each  x e V,  |x| < oc.   In fact, x = 2?^ j.x.,   x. £

X, and for k  large enough all x.  are in  X,.   Then for n > k we have   |x|    <

¡¡Lt  I' I = const, hence the series defining   |x|   converges.]

Let  v denote the topology on   V determined by   |  |.  Evidently  rQ C v.

Let x,, x e X and x, —> x in  r. Then x e X     for some 222 and, since X
K k 777 ' 77Î

is open in  X, we can assume that all x,   are in  X   .It follows that

I* - *J ^  £ lx ~ xk\n + 2~r+1'        r>m'     *>L
« = 1

Since   |x — xfe|n —> 0  (k —► oc) for each 22, it is now easy to conclude that

|x - xk\ —> 0.

Thus v\X C r\X = rjx.  Since  rQ C v, also rQ|X C i/|X.

A similar construction of a norm which induces a given topology on each

member of a sequence of bounded sets can be found in [l].

An analogue of Theorem 2 for groups sounds as follows.

Theorem 2 .   Suppose  (G, y) is a Hausdorff topological abelian group, A

a subset of G, and H the subgroup generated by  A.   If  y\A  is second count-

able, then   (H, y\H) is a continuous image of a metrizable separable space,

hence  (H, y\H) is fully Lindelöf, and there exists a metrizable group topolo-

gy yQ  on  H such that yQ C y|/7  and y.|A = y|A.

The only major alteration that should be made in the proof of Theorem 2

is to use spaces   (-AY" x A"  in place of   K" x X"   [and sets of the form
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^tv...,tn;Al.¿„)=Z'A->
z = l

where each  t. is either 1 or -1, instead of  W(A  , . . . , A  )].

Also, it is seen that part 2° of the proof of Theorem 2 can be easily mod-

ified to yield

Theorem 3.   Let  Y be a Hausdorff uniformity on a set  X and y the to-

pology on X associated with  T.   If y is second countable (= metrizable and

separable), then there exists a metrizable uniformity T ~  022  X which is

coarser than T and compatible with  y.

In the setting of Theorem 2, y = r  \X = t\X, and as  Y, VQ we consider

naturally the uniformities induced on  X by the invariant uniformities compat-

ible with  T and  r     respectively. We are going to show that neither   'T 4 Tq"

nor   "F is nonmetrizable"  can be excluded.

To this aim, consider the example given in [4, pp. 46—48]: E = /   , r is

the weak topology  oil , I  ), and  X = \ke.: i  isa nonzero integer, i £ N\,

where   e . denotes the z'th unit vector of  /  .  Then  X  is countable and  r|X is

discrete, hence second countable, and as  r    we can choose the topology of

coordinate-wise convergence in  / .  Let x   = 22 e    (22 e N). Then x   —> 0

in  z-Q, hence the sequence  (x ) is rQ-Cauchy.  However, it is not r-Cauchy

because for v = (l/n)   M  we have  <x0    — x , v> = n,  n e N.  Hence the iden-
72 €7V ¿n 72

tity mapping  (X, VQ) — (X, T) is not uniformly continuous, and so  T is not

coarser than T..

Now suppose  I" has a countable base. This is equivalent to the assump-

tion that the point 0 of the set   Y = X — X has a countable base of neighbour-

hoods in the space  (V, t\Y).  Therefore there is a sequence  (v  ) in  /    such

that the sets

Un = \y £  Y:\(y, v.% < 1; 1 = 1, ... , «}

form a countable base at 0 in   (Y, t\Y).  For each  22, let  22z    be such that
n

\if     v)\ < l/n    for 1. 1, ... ,«; / e
77Z

7Z

Clearly we can assume 222. < 27i_<• • •.  Let  v = S00   , n~  f .  Then for each  22,
l ¿ 72— 1 72

nfn 4 U, where   U = \y £ Y: \<y, v>\ < l\. Hence none of  (/    is contained in

the neighbourhood  U of 0 in  (V, r\ V).  It follows that  Y is not metrizable.

Since all 22/^  are in X, this argument shows also that z"|(X U J0|) does not

have a countable base at 0, hence it is not metrizable. It follows that in the

assertion of Theorem 2, X cannot be replaced by its r-closure.
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If  a is a linear topology, we denote by  Y(a) the (unique) uniformity

compatible with   a., and by  T(a)|A  the corresponding induced uniformity on

a set  A.

Theorem 4.  Suppose  (E, r) is a Hausdorff locally convex space over

reals and X is a convex subset of E.   Let A  denote the closed absolutely

convex hull of X and W the linear subspace of E generated by  A.   If Y(t)\X

is metrizable, then there exists a metrizable locally convex topology p on

W such that  pCr\W and Y(p)\A = Y(r)\A.

Proof.  First .observe that we can assume  0 £ X.   In fact, if 0 g   X, we

can replace   X   by   X - x     and argue a little subtler than on p. 324.

Let   Y = X - X.   Since  T(r)|X  is metrizable, there is a sequence  (l/_)   eN of

absolutely convex open neighbourhoods of 0 in  (E, r) such that the sets   Y

n U    form a base at 0 in  (Y, t\Y). Since we can assume that  U     , + U     . C
72 72 +1 72 +1

U    (n £ N), there exists a locally convex topology  v on   E  for which  (U  )   €N

is a base at 0.   Evidently  v is semimetrizable and  v C t.  Since  X C Y  and

Y is absolutely convex, A C Y.  Also, since   V/2 C A, it is clear that   W is

spanned by   Y.  Now we shall show that the sets   Y O U    form a base at 0 in

(V, 7Jy).   Let  U be any closed neighbourhood of 0 in  (E, r). Then there is

U    such that   Y H U    CU.   Let y £ Y Cl U  .  Then, given a neighbourhood  V

of 0 in (E, t), (y + V) D U    is a r-neighbourhood of y, hence there is x in

Y n U    such that x £ y + V.  It follows that y£(YC\U)+VCU+V.  Con-
n * J n

sequently, y £ U.   Thus   Y n Un C (/.

Now it is quite obvious that the topology  p = v\W is Hausdorff, hence

metrizablef By Grothendieck's lemma [3, 21.6(5)], both the identity mapping

(A, r(r)|A)—> (A, T(p)|A) and its inverse are uniformly continuous.  Hence

r(r)|A = r(p)|A.   This completes the proof.

It is not clear to the author whether Theorem 4 is valid in complex spaces,

as well as whether convexity of  X  is necessary.  The assumption that  X  is

convex can be omitted if X is compact (see [5, Theorem 5.2], and [4, Theo-

rem 2j), (added in proof) or precompact (see [6, Theorem 1.4]).
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