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ON /-SYMMETRIC RESTRICTED SHIFTS1

PAUL A. FUHRMANN

ABSTRACT.     The restricted shift operators in proper left invariant

subspaces of H     that are /-symmetric are characterized and the signa-

ture of the corresponding operator J   is determined.

The fact that left shifts in vectorial  H     spaces restricted to their

left invariant subspaces can serve as models for the most general con-

tractions in Hilbert space is well known [7], [13].  Thus the structural

analysis of such operators contributes to the general structure theory.  Of

course in the general case we will have to consider shifts of infinite multiplicity.

For shifts of finite multiplicity more is known [7] and they have, be-

sides their intrinsic mathematical interest, considerable importance due

to their use as models for the generators in internal descriptions of linear

time invariant dynamical systems.  In fact most of finite dimensional sys-

tem theory can be done, in an elegant way, using operator theoretic methods

with an emphasis on Hankel and shift operators.  We quote a few papers

[lL [5], [6], [8] that can serve as a guide to the interested reader. This

paper itself has been motivated by problems of system theory where the

signature of the operator /  is related to the residues of the transfer func-

tion of the system.

In a Hilbert space  H we consider a bounded operator /  satisfying

] = ]    = J     .   This implies there exist two orthogonal projections  P+ and

P _  for which  / = P+ + P_, J = P+- P_   and  P+P _ =0.  Thus if H ± =

P ±H then clearly  H ±= [x £H\Jx= ± x].   A bounded operator A   is called

/-symmetric if  A - JA  J.   The  /-symmetric operators have been widely

studied and [10], [ll] are some references to the literature.  Our interest

will be in a very special class of /-symmetric operators.
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Let S be the right shift in H   [9] i.e. the operator defined by (Sf)(z) =

zf(z).  Let   K  be a proper left invariant subspace of  H  , that is, a subspace

of H2  invariant under S*.  By a theorem of Beurling [9], K   = chH    tot some

inner function  ch.  Let  P        ,  ,   be the orthogonal projection of  H    onto   K =
!</>"2i ,

[chH2]   . We define an operator T,   in {<A/Y2|     by  T J = P        2 ±Sf tot all

. x '^W  '
/ £ [chH2]     and then we have  T*. = S*\[thH2]   . Since  T,   is completely

determined by the inner function  ch we want to get the relation between the

analytic properties of cb and the /-symmetry of  T ,.  Inner functions are de-

termined only up to a constant factor of modulus one, thus we will normalize

the inner functions by requiring their first nonvanishing Taylor coefficient

to be positive.  For every a £ H°° we let a(z) = a{z).   Thus  a = a   if and

only if all coefficients in a power series expansion of a at zero are real.

For every inner function cp we define r .   on [cf>H   ]     by

n 1 (c*/)(e!') = e-ità(eit)f(e-it).

r,   is a unitary map of  [chH   ]     onto  [chH   ]     tot which   T'Yr . = r.T,

[4].  Clearly rZ    = r, = ry. Thus if ch = ch then r ,   is a /  operator in

[chH2]1.

Theorem lo   T  is a f-symmetric operator if and only if ch = ch.   The

corresponding  ]  is given by / = ±z",.

Before proceeding with the proof of the theorem we establish

? -t
Lemma 1.   The only unitary operators in [chH   ]     commuting with  I,

zzre multiplications by constants of modulus one.

2   X
Proof.  One part is trivial. So let us assume  V  is unitary in  [<hH   ]

and  TiV - VT,.   By Sarason's commutant theorem [12] we have  V = v(T)

tot some  v £ H0"  satisfying  H^H^ = 1.  Since   V is unitary we have

\v(el )\ = 1, i.e. either iz is inner ot a constant of modulus one.   Assume

v is inner, then vnflthH2 for all f£[chH2]X and all n > 0.  Now / £[chH2]±

if and only if on the unit circle / has the factorization f(elt) = e~ltcb(ell)h(elt)

for some   h £ H     [3].   Thus  our assumption  implies   zvnh  1 H     fot

all Z2>0.  This implies h £ C\l°=0v"H2 = ¡0 ]. Thus  ¿ = 0 and hence / =

0.  Since / is arbitrary and ch nontrivial, this is impossible.  Thus  v is a

constant of modulus one.

Proof of Theorem 1.  If ch - ch it follows from the remark following (1)

that T ,   is /-symmetric with respect to r ,.  Conversely let us assume  T .
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to be /-symmetric with respect to an arbitrary /.   Hence  T. - ]T,J.   This

implies that the minimal inner functions [13] of  T,   and  T,   ate the same,

therefore  ch = ch.  This in turn implies, as above, that  T. = r.TAr,   and

hence   T^ = r^ijT^J)^ = ir ¿flT ¿J r ¿ or T^iJrJ = iJrjT¿.  Thus /^,

which is unitary, commutes with  T,   and hence, by Lemma 1, Jr. = a  with

a  a constant of modulus one.  Multiplying on the left by /  we have r, =

a] and as   r,   and  /  are selfadjoint it follows that  a  is real.  Hence  a =

±1.

Next we want to find the dimensions of  K+ = [f £ K\r ,f- j] and  K_ =

[f £ K\r,f= - ¡].   Let us denote by kQ  and  KQ  the functions defined by

*• " 'i***IXl   3nd   K0 = P^H2S^ [21  Since

T*k0=P[<pH2]^nk0 = P[é,H2]Sn,

we have the set of vectors  [T"kAn > 0]  spanning  [chH   ]     or equivalently

ze„  is a cyclic vector for  T ,. Now  r ,&. = K„  and  r,Kn = k .   which im-
0 7 „jtj 0   0 0 <p0 0

plies that  r ,TA"K   = TX~kQ  and hence, by the fact that  r ,   is unitary, K_

is a cyclic vector for  T ., or |T , "KAn > 0j also span  [chH   ]   .

Theorem 2.   Lef  rA be inner satisfying ch = ch.

a. K+ = Clos{a(T)zfe0 + a(T*)/C0| a e W°°¡,

K_ = Clos\aiT)k0 - a(T*)KQ|a e W00!.

b. K+ z's finite dimensional if and only if ch is a finite Blaschke

product.   The same holds for K   .

c. // ch  is a finite Blaschke product of n factors then dim K+ =

[iß + l)/2] and dim K_ = [n/2].

Proof,  a.  Since  ch = ch we have  r AT , = T ,r,   and in this case

r**o - Ko and r0Ko = V Thus

<4>' 4>

r4>[aiT)k0 + (T*)K0| = |a(T*)K0 + a(r)An|

and this implies that for all /in  K+ = Closja(T)&0 + a(T )KQ|a e H°°S we

have r,f=f.   Similarly  r,g = -g for all  g  in  K_ = Closía(T)¿0 - a(T*)XQ|

a £ H°°],   Clearly those subspaces are orthogonal for if f £ K+ and g £

K_  then

(f.g)=ir4>f.g) = if, ^g) = (/, -g) = -(/, g)

and hence  (/, g) = 0. The direct sum of these two subspaces contains all

vectors of the form  T"k , n > 0, and hence is all of  ir/>W   Î   .
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2    X
b.   [chH   ]     is finite dimensional if and only if ch is a Blaschke prod-

uct with a finite number of factors.  Thus in that case  K+ and  K_  ate

finite dimensional.   Assume now  K     is finite dimensional, in this case

only a finite number of functions of the form   T k. — T     K.   ate linearly

independent.   Thus for some integer n and, not all zero, a. we have

1"   , a .(Ty£_ - T*'/0 = 0.   The functions  Tkkn  and  T*'Kn  are easily ex-

pressible in terms of the inner function  <ß and in general we have

iT'k0)iz) = z' - çS(z)   £   ch z'   k

k=0

and

r

(T*>'K0)(z) = z-(>'+1) chiz) - £ <Pkz'

k=0

Thus if S"_na.(T,/fen — T    KA) = 0 it follows, dropping bars as  ch = ch,

that

Z v' ~ ̂ {z) £ ai Z ^kz
;=o y=o       fe=o

/-*

■(zz+l)
^Xa,*-'^-'«*1^   */""' £  tk*

Now

y=o ;'=o ifc=o

Z <*,■ Z 0t
7=0 k=0

n

Z aA_/2¿
b = 7 J

"      T' 1
Z   Z ***„+*-, *'■
,=o l^=o J

Therefore p(z) = <p(z)z7(z) with p  and  zy being (2re + l)-degree polynomials

given by

zz «   r„ i

p(z)=£ a.z» + >+1+X     ZaA-y K
7=0 7=0   [k = j

Z v"'y z *,
7=0 ¿=0

?(z)=¿a.z«-^¿r¿aA_1z'+« +
7=0 7=0  [k=j

y
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It is clear from the above that if p. and  q. are the coefficients of p  and  q

respectively then  p. = q2   +,_■•  It follows that  ch is a Blaschke product

of at most  2n + 1   factors.  The same result follows from the assumption

dim K+ = n.

c. Let us assume now that dim K = n, i.e.  ch is a Blaschke product of

n factors.  Let the zeroes of ch, repeated according to multiplicities, be

\., i=l,..., n.   Thus  cpiz) = Il?=1(z - k.)/il - kz).  Let m(z) = IF=1(z - A.).

Thus zzz  is the minimal polynomial of  T ,, and as  m = m, also of  T ,.

Clearly we have  cp(e11) = m(elt)/elntm(e~lt).  Let  r= r n   be defined in
2   J- . .    . z

[z"H   ]     by (1).  We will show that  r ,   and  r ate similar and hence their

o X
signatures are the same.  To this end we define a map <Jj  on  [chH   ]    by

(2) (<5/)(e¿') = eintm(e-u)f(eU).

Let p(elt) = e'ntm(e      ); then p is a polynomial of degree  zz and hence
2 o    X

$/= p/ and pf £ H    tot all / e icSW   !   .  Now zzz being the minimal polyno-

mial of T*^ implies mf i H2 fot all f e [chH2]   .  Thus z"mf = pf is a polyno-

mial of degree < n - 1.  So $ maps  [chH2]     into  Sz"W2S   .  Since p 4 0  $ is

1-1  and hence an invertible map of [chH  ]     onto  [znH   ]   . Now

i<S>r.f)ieu) = p(e¿í)(r , /)(e¿i) = pie^chie^fie'^)
v <p

= e-<V'"Me-¿0<p(e¿')/(e-¿í) = e-¿'7Zz(e¿')/(e-¿0

= e-f« . eint ■ e-^mie^fie-*) = (r$/)(e¿í).

Hence ^r , = r$  and this means that  r .   and  r are similar.  In particular

r^f = / if and only if r$f = $/ and r^f=-f if and only if  r($/) = - ($/).

Thus the signatures of r and  r .   ate the same.  In terms of the natural

orthonormal basis of [z"H   ]     consisting of the functions   1, z, . . . , z"~   ,

r has a matrix representation given by  T = it..), t. ■ = 0  if  i + j 4 n and   1

if z + / = zz.   Clearly tr(T) = 0 if zz is even and 1 if it is odd, hence the result.

Corollary.   Let ch be inner.   T ,   defined by (1) in [chH   ]     is selfad-

joint if and only if ch(z) = a(z — X)(l - Xz)~     for some real X, \X\ < 1, and

a of modulus one.
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