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THE GENUS OF SUBFIELDS OF  KM

JOSEPH B. DENNIN, JR.

ABSTRACT.    In this paper we fix a genus  g   and show that the number

of fields of elliptic modular functions  F   of genus  g  is finite.

1.   Introduction.   Let  Y be the group of linear fractional transformations

w —> (aw + b)/(cw + d) of the upper half plane into itself with integer coef-

ficients and determinant 1.   Y is isomorphic to the group of  2 x 2 matrices

with integer entries and determinant   1  in which a matrix is identified with

its negative.   Tira),  the principal congruence subgroup of level 22,  is the sub-

group of F consisting of those elements for which a s d m 1 (mod n) and b =

c = 0 (mod 22).   G is called a congruence subgroup of level  22 if G contains

Y(n) and n is the smallest such integer.    G has a fundamental domain in the

upper half plane which can be compactified to a Riemann surface and then

the genus of  G is defined to be the genus of the Riemann surface.   We de-

note by   K(n)  the field of elliptic modular functions of level  n,  i.e., the

field of meromorphic functions on the Riemann surface corresponding to  Y(n).

If ; is the absolute Weierstrass invariant,   K(n) is a finite Galois extension

of C(j) with  Y/Y(n) for Galois group.   SL(2, 22) is the special linear group

of degree two with coefficients in  Z/22Z  and  LF(2, 22) = SL(2, 22)/+/ where

/ is the identity matrix.   Then Y/Y(n) — LF(2, 22).   If Y(n) C G Ç Y and H

is the corresponding subgroup of LF(2, 22),  then by Galois theory  H corre-

sponds to a subfield  F of  £(22)  and the genus of  F,  denoted by g(F),  equals

the genus of G.

In this paper we fix a genus  g  and show that the number of  F  such that

C(j) Ç F C K(n) for some  22 amd such that g(F) - g  is finite.   More precisely

we prove that, for the fixed g,  there are constants  r, t., . .. , t    such that

any field of genus g is a subfield of K(p'. * • • • p'r) where  />,,..., p   ate the

first  r primes arranged in their natural order.   A corollary to this result is a

proof of a conjecture of   H. Rademacher  that the number of congruence sub-

groups  of T of genus  0  is finite.   Some previous results on the Rademacher
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conjecture have been obtained by Knopp and Newman [5I, McQuillan [8] and

the present author [l], [2].   The case of arbitrary genus  g  and  n = pm,  a

prime power, has been considered in [3].   The proof of the theorem is in two

steps.   First we show that there is an  r such that any field of genus  g is a

subfield of  K(p*1 ■ • • p*r)   for some    *,, 1 < z <>.   Then we find constants

t,,..., Í   such that any field of genus  g is a subfield of  K(p j L.., /jG).

2.   Preliminaries.    The following notation will be standard.   GÍL/K.)

is the Galois group of  L  over  K.   g(K) is the genus of K.  K • K    is the com-

positum of K and   K    considered in some larger field containing both K and

K .   \A\  denotes the order of the group  A.   (c) is the group generated by  c.

With the primes considered in their natural order,   p. is the z'th prime,   p   is

the largest prime p such that, for some x,   K(px) contains a field of genus

<g other than  C(j).   p   exists by [3, Proposition 2.6] and is larger than 3«

Suppose   G is a subgroup of Gj x G2.   Let  N¿ = the projection of G

onto  G.; ft1 = {g1\gl EG,, (g v 1) e G\; ft2 = !g2|g2 e G 2, (l, g2) £ GÏ   ftj

is called the z'th foot of G.   We will use extensively the following proposition

on subgroups of the direct product of two finite groups which can be found in L7j.

Proposition 1.   Suppose G Ç G, x G2 with G,, G2 finite.   Then ft.  is

a normal subgroup of N -, z = 1, 2,  and N./ft.  — /V ///

We now collect some basic facts about the groups   LF(2, 27z)   which we

will need.   | LF(2, m)\ = lAm </>(ztz)i/»(z22)   where (pirn) is the Euler <p function and

1/7(222) = zTzll 1   (l + l/p).   Suppose p is a prime and consider the natural homomor-

phism  /": LF(2, p") —> LF(2, pr) defined by reduction modulo  pr, 1 < r < n.

The kernel of fn = KT  and   \Knf\ = pn"-T) ii p 4 2, r 4 L  |K"| = 23""4  for

p = 2.   For  p > 3,   the only nontrivial normal subgroups of LF(2, pn)  are

K", 1 < r < n [7]. The following lemma is proven in [4] for p >2 and in [2] for p = 2.

Lemma 1.  // \H n Kn_x\ < p2,  then \HdKT\k p2"~2t, I <t<n-l.

A IT U- 1
As an easy corollary to this we have

Corollary 1.    // H  is a subgroup of  K"   and \H\ > 2n - 2t + r for some

r, I <r< n- t,   then  Kn      C H.
•T —

The following is a collection of facts about fields and Galois groups

which we will use. The proofs are straightforward and most can be found

in a standard text such as Lang [6].   Suppose   K and   K' are subfields of  L

and K O K' = k.
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(1) G(L/K • K') = G(L/K) D G(L/K').

(2) G(L/k)= G(L/K)-G(L/K') If  K or K'  is normal over k.

(3) G(K • K /k) ■* G(K/ k) x G(K /k) with the isomorphism given by pro-

jecting o in  G(K- K /k) onto both factors.

(A)   G(K- K /K) — G(K /k) with the isomorphism given by restricting

o in G(K-K'/K) to  K'.

(5)   If k Ç M Ç L and  KFÇKare fields with   LnK=k, then in   K • L.

(F-L)n(K-M) = F-M.

3.   Main results.   Let 22 = 777p5 with (p, 222) = 1  and p the largest prime

dividing n.   Consider the following diagram of fields and Galois groups.

K(m)

LF(2,m)

G a LF(2, 222) x LF(2, ps).   G(m) is the kernel of the natural homomorphism

from LF(2, n) to LF(2, 272) and equals í ±("¿)|a = d=l, b = c = 0 (mod 222)!.

(c) has order  2 and is the kernel of the homomorphism from LF(2, n) to  G.

By the Chinese remainder theorem,   c = i(?   )  with  a = 1  (mod 222)  and  a =

- 1  (mod ps).   Hence  (c) is contained in the center of LF(2, 22).

Lemma 2.   G(m) » SL(2, ps).

Proof.   Consider 0: SL(2, ps) x K0°)} -> LF(2, 722)   given by:

'l     0>
SL(2, ps) I SL(2, ps) x SL(2, 222)

X SL(2, 22) -i-. LF(2, 22) -X LF(2, 222)

where  i is the injection,  / is the isomorphism given by the Chinese re-

mainder theorem,  g  is reduction  mod ±/  and h is the natural homomorphism.

Then  G(m) equals the kernel of h  and go/02  is   1-1  into  G(m) since the
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intersection of the kernel of g  and the image of foi = /.    But   |G(m)| =

ps(f>ips)if/ips) = |SL(2, ps)\  so that the map is onto.   Hence SL(2, ps) « G(m).

Proposition 2.    Suppose  FC Kim)Kips)  with im, p) = 1, p the largest

prime dividing n and p > p .    If giF) < g,  then  F C Kim).

Proof.   Let H = GiKim) ■ Kips)/F) so that  H Ç LF(2, zzz) x LF(2, ps).

N2,  the projection of H onto LF(2, ps), = GÍKÍps)/FnKÍps)l But giF CKips))

< giF) and so by the assumption on p, F O Kips) = Cij).   Therefore N2 =

LF(2, ps).   ft2  is normal in N2  and, since p > 3, ft2 = Ks for some t. There-

fore N2/ft2 » LF(2, p') and so p divides   |zV2//«2|.   But N2/ft2 s N///,

so that p divides   |/Vj|.   But 2V1 C LF(2, zzz) and  p \ |LF(2, 722)|.   So  N2 =

ft2  and /Vj = /ij.   So // =. /Vj x LF(2, p5) and by Galois theory,   F C K(z2z).

Proposition 3.    Suppose  F C K(mps) with im, p) = 1, p the largest

prime dividing  n and p > p .   If giF) = g,   then  F C R(z2z) • Kips).

Proof.   Let H = GÍKÍn)/F).    If c £ H,  we are done.   So suppose //O (c)

= /.   H-(c)= GiKin)/F Ci Kim)Kips)).    By Proposition 2,  F n Mzzz) • K(¿>s) Ç Mm)

since g(FO Kim) • Kips)) < g(F).   So  G(22z) Ç H ■ (c).   So

G(z22) = G(ztz) Pi (H U cH) = (G(tzz) Ci  //) U c ■ iGim) D H)

since  c e G(272).   Therefore 0(222)0//  is anormal subgroup of index 2 in   G(m).

But by Lemma 2, G(m) s SL(2, /5s)  which has no subgroups of index   2  for

¿>>3    [7].    So Hnic)4¡.

Theorem 1. // F /zas genus g,   then F C KypxA • • • pXr) for some x., 1 <

2 < T.

Proof.   Suppose  F C Kin) and  p is the largest prime not in  {pj, . . . , p !

which divides  22.   Write 22 = zrzp5  with (222, p) = 1.   Then  by Proposition 3,

F C KÍm)KÍps) and then by Proposition 2-   FC K(to).   Repeating the argument,

one has, after a finite number of steps,   F C /((ttz)  with  pj, . . . , />    the only

primes dividing 272.

For 1 < i < r,  let  e. be the smallest power of p. such that any field

4 Cij) of genus <g which is contained in   K(px') for some   x.  is actually

contained in  K(peA) [3].   Suppose P?¿l|nr=¿ + 1 (p2 - l).   Since K(px) Ç K(px + 1),

we may assume in the following that, for all  2, *. > e . + ¿.,

Proposition 4   Suppose F C nr=1R(p^!) with x> e. + d. and g(F) < g.   Then

,   e,t(¡,. ,   e^ + d-, + 1     r-. e. + d.
F Ç K{p S      ')■ Kip2      2    ) J] fi(p;.z     l).

z'=3
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Proof.   The proof is by induction on the number of primes.   Suppose

XX XX

F Ç ttPrl'-í') • K(p/)     and    H = G(K(p/_- L) ■ K(p/)/F)

so that H Ç LF(2, p*' -1) x LF(2, px').   Then, since
— l r

N2=G(K(p/)/F n Kip/))    and    (F n K(¿>/)) Ç K(p/),

N2 2 K*'. There is an H' Ç H such that N2 = K%r. Then |/V2'//f2| divides

¿>* but pr \ \N[\ since Ni Ç LF(2, t>^j I). So /V2 = //2 = KXJ. But /f2 D

//2 so that ix/i^CfV and  F Ç K(px/_x 0 • Kip*') = Lj.   Similarly

iV ; = G(K(£- VF n K(t5^- *))    and so     KJ~ 'çN,

There is an //' Ç H such that N¡ = K*J- }.    \N'/ft[\ = £   ,  and N[/ft\

N2/ft2.   So p^J^-l  andy<Vf_i.   Let \ft[\-=pzr_v   Then(3xr_1-

3er_j) - z = y < í/^j, i.e.

z > (3xr_ , - 3e,_ t) - ¿r_ ! = (2xr_ j - 2er_ j) + ((¿r_ j - er_ j) - ¿r_ ¡)

and so, by the corollary to Lemma 1,   ft^ 2 ^eTT~ }+d     ..   So

K/-1 x/Ç/7    and     F Ç í;(/r/¿'-')■/<(/') = L,.

Then FÇLjOL2 which by fact (5) equals   K(p^_j^dr- "-)K(peTr).

Now suppose

'//,'   a.

FÇK(Pxt'). n ^p]\  p n n k(p-z)c n ^¿+¿ó
2=2+1 ¿=2+1 2'= 2+1

w=g( n kí^ó/f).
\¿=í      /

Then  N2 2 n¿=í + i K£j.+¿¿    and so there is an  H' C H such that  /V'2 =

Tlri=t + 1Kxi+dt.   Then   N¡//t¡aN[/ft'v   |W>2|   divides ITT=f + 1 #•  and, if

p. 4 3, no  p. divides  \N'\.   So

W2*/**2    and    ftp_ft\=    IT     K*' + |¿.
2=2+1 * «

So

x /     ' e. + d.\

FÇK(p/).      II     *(*>,•'     ')   =Lr
\=2+l /

If pi+1 = 3, then it is possible that pt + l\\ |Nj|  in which case, arguing   as
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in the 2nd part of the first step of the induction, one gets

PÇKip^).Kip'tif^tl).    fi    KipeA+d>) = Lv
i=t+2

Similarly  K*.j C N j  and so there is an  //' C H  such that  /Vj = Kx>t.   Let

lA/jV/Zjl = pyt   and   l/tj'l = p*.   Then, as before,  z > (2xf - 2e;) + (0^ - e)

- rf)  and so ft\ 2 Kxt+C¡r   Therefore

FCKipet< + d<)-(n    KipXÀ=L2.
\z=í+l /

Again F Ç Lj CiL2   which equals  II'    Kip1:'■    0 unless  p +1 = 3 in which case

case  e +1 + d  .,   has to be replaced by  e + , + d +1 + 1.

Let 22 = IP=1p*C L = IP=1K(p*0 and A = G(K(72z/K(pxlp22 • • -p'/))

where  tn = en +- dn + I  and  t ■ = e . + d., i 4 2.
2 2 2 z z z'      ^

Proposition 5.   If F Ç Kin)  and giF) = g,   then F C K(pxlp22 ■ • • pH

Proof.   Let

±(   ' ),  a.ml   (mod     fi      pj\  a.^-l  (mod p*0,
\0      «J \        y=l;;Vz        '

be the nontrivial element in the kernel of the homomorphism from  LF(2, 72)

to LF(2, pxA) x LF(2, jT=1. ■jkipx').   Then  C,  the group generated by the

c., 1 < i < r,  equals  G(Kin)/L),  is contained in the center of LF(2, 72) and

has order 2T~ l.   GÍKÍn)/F H L) = C - // and [C//: tf] = 2*, 0 < s < /■ -   1.   By

Proposition 4, FOLÇ /<(pxl) - IJ^.KÍ^')  and so

F CLÇFn  KiPllp2--- p/).
- 1       / r

Therefore

G(K(22)/K(p^P22 • ■ • Prr) Ci F) = A ■ H C C • H.

So we have  H C A • H C C • H and  // is normal in   C • H  since   C is in the

center of LF(2, 22).   So  // is normal in  AH and  AH/H A A/HC\A. So Hn A

is a normal subgroup of A oí index  2l, 0 < t <s.   But   |A| = lI¿=2p3(x¿~Í!')

which is odd.   So AC\H= A or ACH.    Therefore  F Ç Kipxlpp ■•■ p1/).

Proposition 6.    Suppose   F C 2^(22)  ifz'r/z   22 = 2xzzz, (2,  222) = 1   and

giF) = g.    Then   F C K(2'     222)   where   t = e.  + «/..

Proof.    As before, let
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C = G(K(t2)/í<(2x) ■ K(m))    and    A = G(K(n)/K(2lm)).

| C\ = 2.   FH K(2x)K(m) C K(2')K(222) and so Fn K(2X) ■ K(m) C F O K(2<772).   There-

fore  H Ç AH Ç CH.   Since [CH: H] < 2,  there are 2 possibilities. If H = C-H,

then W = A ■ H, A C // and so  FC K(2'2T2).   If [CH: //] = 2  and  H = AW,  again

A C H  and we are done.   So assume  [A/7: //] = 2.   Then since AH/H a

A///OA, /ín/í is a normal subgroup of index 2 in A.   Let

A' = G(K(2X) • K(m)/K(2l)K(m))

and let ct>: A —»A    be the homomorphism obtained by restricting an auto-

morphism  o to   K(2X) • K(m).   çS  is an isomorphism and so cS(//n A) has index

2 in A'.   But A' = Kx and so
2

«¿(W n A) D Kx+1 = G(K(2*) • KU)/K(2i + 1) • K(m)).

Therefore

G(K(22)//C(2i + 1222)) C H Ci A CH    and    F Ç K(2Í+1722).

Theorem 2.   If F Ç K(px * • • • pxA has g(F) = g,   then
r

e,+d,+\ en + d-. + l e^+d, e   +2/
(*) FÇK(p/      l     -p2     2     • p33     3---p/     r).

Proof.   Apply Propositions 5 and 6.

Combining Theorems 1 and 2, we obtain

Theorem 3.   Suppose  F C /((ra) for some n and g(F) = g.    Then(*) holds.
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