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ABSTRACT. The vanishing of the numerical invariant v(G) of a finite group

G is linked to the existence of certain central annihilators of the generic right

ideal   r„(C)  in the group ring  RG.  This leads to several affirmative answers of

questions posed in [lj.   Also, some explicit values of  v(G)  are described for the

class of finite nonsolvable groups having all their odd Sylow subgroups cyclic.

For an associative ring R with identity and a finite group G, denote by

r„(G) the right ideal of the group ring  RG generated by elements of the form

ot(H) m £  e„ h, where  H  is a nontrivial subgroup of  G.  Since gcr(H) -

o(gHg~  )g and to(H) = oiH)r, we see that TR(G) is also the left ideal of

RG generated by these   o(H)'s.  An easy coset argument shows that the gen-

erators   o(H) for  r„(G) may be restricted to the prime-order subgroups of

G.   The invariant ideal  yR(G) of  R   with respect to.  G  is then de-

fined to be the (two-sided) ideal R PI T„(G)  [l]. When   R  is che ring of ration-

al integers, we put Hg) = rz(G), and y(G) = yz(G) = v(G)Z with v(G) > 0.

This uniquely determines a nonnegative numerical invariant  u(G) for  G; see

also [3J, [4]. In [l] three fundamental reduction theorems were proved, and

using them, explicit theoretical as well as numerical results of the invariant

for several large classes of groups were obtained.  The present article con-

tinues the investigation for yR(G). Recall a group is tight if it is a noncyclic

group of order   pq, where  p and  q are not necessarily distinct primes.  In the

solvable case, the numerical invariant is essentially determined by the nu-

merical invariants of the tight subgroups (for instance, see [l, Theorem I.F.2]).

This is generally not so in the nonsolvable case as SL(2, p) has no tight

subgroups for p a Fermât prime, and yet 0 4 i-'(SL(2, p)) whenever p > 17,

and also  p divides  v(S>L.(2, p)). See [l, Proposition I.G.4 and Appendix IHc].

For nonsolvable groups, the precise determination of  i^(SL(2, p)) tot  p a Fer-
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mat prime is of paramount importance. Scharlau showed in [4] that

i/(SL(2, 5)) = 0 because  SL(2, 5) admits a fixed-point-free representation over

the rationals.   With  the  aid of a computer,  thanks  to the  efforts of

David Ford, we answer here affirmatively a question raised in [l]; namely:

r(SL(2, 5)) has a central annihilator a such that the coefficient coeffa(g0)

of a. at g0 is  1, for some gQ eSL(2, 5).  From this result follow several

interesting consequences.  In particular, we have:

(i) For all R, yR(SL(2, 5)) = 0;

(ii) viGx x G2) = g.c.d.(i/(G1), viG2)) if g.c.d.(|Gj|, |G2|)= 1.

Using theorems of Suzuki about the structures of groups all of whose odd Sy-

low subgroups are cyclic, we are able to determine in most cases the precise

value for viG) where  G  is a nonsoévable group whose Sylow subgroups all

have vanishing numerical invariants.  Again, the exceptional cases occur when

G contains a subgroup of the type SL(2, p), p a Fermât prime > 17. We con-

clude this introductory discussion with two conjectures:

(A) KSL(2, p)) = p for p a Fermât prime  > 17.

(B) If G is a solvable group and viG) = 1, then G contains tight sub-

groups with differing numerical invariants.

Central annihilators. As was observed by Scharlau  [4, Satz l], the van-

ishing of the numerical invariant for G occurs precisely when  G admits a

fixed-point-free representation over the field of rationals. From the proof of

this statement, it is clear that  viG) = 0 if and only if  ro(G) has a nonzero

central annihilator a. in  QG.  On the other hand, the proof of [l, Theorem

I.A] suggests that if viG) = 0 then  PR(G) should more-or-less have a cen-

tral annihilator in  RG with one of its coefficients equals to one. Indeed, we

have

Theorem 1. Suppose v(G) = 0.  Then G has a normal subgroup GQ such

that

(i) G0  contains every prime-order subgroup of G, and

(ii) rR(G0) has a central annihilator a. in RGQ with coeííaigQ) = 1

for some gQ £ GQ.

We first need two lemmas and a definition. A finite group G is said to

satisfy condition  i*) if G  has exactly one prime-order subgroup for each

prime dividing the order  \G\ of G.

Lemma 2. Suppose viG) = 0.  Then  G has a normal subgroup H such that

[G: H] < 2, and H = L x M where  L satisfies condition  (*), M is either 1,
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or SL(2, 3), or SL(2, 5), L and M have relatively prime orders, and H

contains every prime-order subgroup of G.

Proof.  The hypothesis  v(G) = 0 implies all the odd Sylow subgroups of

G are cyclic, and a Sylow 2-subgroup of G is either cyclic or generalized

quaternion (see  [l, LB.2] or [4, Satz 3]). Suzuki's theotem  [5, Theorem C]

implies then the existence of an H with   [G: H] < 2 with H = L x M where

L  is a group all of whose Sylow subgroups are cyclic, and   M is either triv-

ial or SL(2, p) fot some prime p. As M cannot have any tight subgroups it

must be either trivial or else  p must be a Fermât prime (see [1, I.G.2]). And

since  u(M) vanishes, p can only be either 3 or  5.   L is solvable, so since

v(L) must also vanish, L satisfies condition  (*) from the proof of Theorem

I.F.2 (Case i) of [l].  As  G has at most one involution, H clearly contains

every prime-order subgroup of G.

Lemma 3.  If K   satisfies condition  (*), then there is a subgroup H which

contains all the prime-order subgroups of G, and an element  a. in the center

3(RH) of RH, for any  R, such that a annihilates YR(K) and coeffa(l) = 1.

PfooL  If H . = (h ), 1 < i < m ate the distinct prime-order subgroups of

K.  Put H = H, x • • • x H   , and  a = (l - h, ) ■ • • (1 - h   ). Then, a annihilates
I m 1 m

o(H.) for every   i, and so it annihilates YR(K). The coefficient of a at 1

is clearly   1.

Proof of Theorem 1. Since the center of ZG is contained in the center

of RG and since  YR(G) is the right ideal generated by elements of the form

o(H), where H runs through the prime-order subgroups of G, it suffices to

consider the case when  R = Z. As v(G) = 0, there exists a subgroup H =

L x M with properties described in Lemma 2.  Let  N be the subgroup of  L

generated by its prime-order subgroups, so that N is cyclic of square-free

order, and consider the subgroup GQ = N x M.  Clearly, GQ is normal in G

and contains every prime-order subgroup of  G.   By Lemma 3, Y(N) has a cen-

tral annihilator  o. in  ZN such that coeffa(l) = 1. If M = 1, we are done.  If

M = SL(2, 3), then the computations given in [1, Appendix Ilia] show that

Y(M) has a central annihilator ß in  ZM with coeff a(mQ) = 1  for some

222Q e M. With the aid of a computer (see [2]; also Appendix given below) the

same result remains true for  M = SL(2, 5).  Thus, aß is a central element of

ZGfl, and it kills every prime-order subgroup  P of  G„   since every prime-

order subgroup of G„  lies either in N or in M.  Finally, coeffao(7220) = 1.

Corollary 4. // v(G) = 0, then yR(G) = 0 for all R.
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Proof.  Let Gn be a normal subgroup of G such that GQ contains every

prime-order subgroup of  G  and so VRÍGQ) has a central annihilator  a. with

coeffaig0) = 1  for some gQ £ GQ. By the first reduction theorem [l, Theorem

I.D.2], yRiG) = yR(G0). On the other hand, if r £ yRiGQ), then r • a. = 0, so

that r = coefiraig0) = 0. Thus, yRÍG) = yRÍGQ) = 0.

Corollary 5.  // H and K are groups of relatively prime orders, then

yRiH x K) = yRiH) + yRiK). In particular, therefore, we have: viH x K) =

g.c.d.iviH), viK)).

Proof.  If viH) 4 0, then every prime divisor of  viH) divides   \H\ [4,

Satz 5]. In particular, if viH) and viK) both do not vanish, then  viH)R +

viK)R = R, forcing  yRÍH x K) = R = yRÍH) + yRiK). Hence, assume  viH) = 0.

Corollary 4 yields  yRÍH)= 0.  Also, H has a normal subgroup HQ which con-

tains every prime-order subgroup of  H and such that V„(//_) has a central

annihilator ct in  R//Q with coeffa(/j.) = 1  for some />_ £ H... Since //„ x K

contains every prime-order subgroup of H x K, by the first reduction theorem

[l,  I.D.2], yR (// x K) = yRiHQ x R). Hence, we may assume  // = HQ. Suppose

r £yRiH x K). Write

r =    >    a,  • h +■    >      b,  • k,
HTM    h keKk

where a^ £ rR(/0 for all h e H and  e¿ 6 rR(//) for all k £ K.  Since  a

kills  />£ for all k £ K and is central in  R(// x R), we have

r'a=    ^    a,  • a • h.
h eH

Let a = ZheH ch- h with c^ £R for all />£//.  Then,

ra =    X   r •' c„ f y -   Z        Z   afc " «?    .      ■ y-
yeH y£fi   \/?e/V b    yf

But, RÍH x K) is a free R/C-module with basis  //.  Therefore,

y    ben h   y

belongs to  VRiK) for all y e //.   As  c    =1  for some  y e H, this gives  r e

yR(K). Hence we have:

yRili x K) = yRiK) = yR(//) + yRiK).

Corollary 6. Suppose  Q  is a normal Sylow q-subgroup of G for some

prime q.  If viG/Q) = 0, then we have:
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(i) v(G) = 0 or v(G) = a.

(ii) v(G) = g.c.d.(iv(r)|T  is a tight subgroup of GÎ).

(iii) yR(G)= v(G)R.

Proof.  Let  H be a complement of Q  in   G, and so  v(H) = 0.  As before,

we may suppose  H = HQ and there is a central annihilator  ct in  RH with

coeffa(/3n) = 1   for some  h £ H.   By the third reduction theorem [l, Theorem

I.D.4], we have   yR(G) is contained in  R n (YAH) + a • R//). If  r belongs

to this intersection, write  r = a + qb with  a £ YR(H) and  Z> £ RH.  Then,

T.a. = a.a + q-a.b = q-a..b.  But then, r = coeff^ _ a(¿>0) = coerr?.a.¿^'o^

e aR.  Hence, YR(G) Ç ^R.  In particular, if G has a tight subgroup with nu-

merical invariant  a, then we are finished.  So, assume that  G has no such

tight subgroup.  In particular, Q  is cyclic or Q  is generalized quaternion.

Case 1.  Q  is cyclic.

Let QQ be the unique subgroup of Q of order i?.  Then, QQ<IG, and

the centralizer  CG(Q.) must contain every prime-order subgroup of  G since

otherwise  G  would have a nonabelian tight subgroup having numerical invari-

ant  q.   But, CG(Q/) = 2 x CH(Q0).  Using the first two reduction theorems

[1, I.D.2, I.D.3], we deduce:

yR(G) = yR(CG(QQ)) = yR(Q x C^QJ) = y/?(Q0 x C„(20)) = YR(CH(QQ)).

Clearly, v(CH(QQ)) = 0  since   v(H) = 0.  Thus, yR(G) = 0.  Also, every tight

subgroup of  G  lies in  C^(QQ) and so in  //, but  //  has no tight subgroups.

Case 2.  Q is a generalized quaternion.

G has a unique central involution. If  |Q| > 8, then G/CG(Q) is a 2-group,

so that   CG(Q)  contains every prime-order subgroup of  G.   But, CG(Q)

= T x CH(Q), where   7"  is the central subgroup of  G  of order two.   This

reverts back to Case  1 by the reduction theorems.  Hence, we mav sup-

pose that   |2| = 8.    As proved in   [l ], either  G = Q x H with  H satisfying

condition   (*) and also being of odd order or else we have  G m SL(2, 3)x/í

with H satisfying condition   (*) and 6 -f|//|. In either case, G is solvable

and has no tight subgroups so that i;(g) = 0. Thus we are done by [l, Theo-

rem I.F.2].

Remark.  Corollary 4 follows also from Corollary 6(iii) and the second

reduction theorem.  Indeed, if  v(G) = 0, choose a prime  a not dividing   \G\.

Consider G = G x Q where  Q Si Z/aZ. So, we have  yR(G) - yR(G) - v(G)R =

v(G)R = 0.

Nonsolvable groups having cyclic odd Sylow subgroups.  In the setting

here  v(S) vanishes for all odd Sylow subgroups  S of  G.  We shall consider
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two cases: (a) a Sylow 2-subgroup is generalized quaternion, and (b) a Sy-

low 2-subgroup is dihedral. In both these cases, Suzuki's structural theorems

apply; see [5].

Case  (a). G has subgroup GQ of index at most two and  G„ is isomor-

phic to H x SL(2, p), where  H is a Zassenhaus group (i.e. every Sylow sub-

group of H is cyclic) and  p a prime > 5, since  G is nonsolvable.  In par-

ticular, we observe that the orders of H and SL(2, p) ate relatively prime.

Also,as  G  has a unique involution, GQ  contains every prime-order subgroup

of G so that yRiG) = yR(GQ). Since H is solvable and all of its Sylow sub-

groups have vanishing numerical invariants,  Theorem I.F.2 [l] can be ap-

plied to determine  yRiH). In particular, viH) is either 0, 1, or a prime di-

viding   |//|. If p is not a Fermât prime, then i^(SL(2, p)) = p (see [l, Corol-

lary I.G.5]).  Therefore, we deduce:

viG) = g.c.d.iviH), p) = g.c.d.i\viT)\T   is a tight subgroup of Gl).

If  p is a Fermât prime and if viH) = 0 (equivalently, H has no tight sub-

groups), then viG) = v(SL(2, p)) by the reduction theorems.  Of course, when

viH) = 1, viG) = 1  as well.  On the other hand, if viH) = q, then q -f |SL(2, p)\.

As  v(SL(2, p)) 4 0 for p > 5, we conclude: viG) = 1 for p > 5, and viG) = q

when  p = 5.  Thus, if the precise value of  i/(SL(2, p)) can be achieved for

Fermât primes exceeding 5, the precise value for v(G) can also be complete-

ly determined.

Case (b). Again, Suzuki's Theorem B [5] gives us the structure for G;

namely, G contains a normal subgroup GQ of index at most two, and G„ =

H x LF(2, p) where H is a Zassenhaus group and LF(2, p) is the linear

fractional group with p > 5. It is well known that LF(2, z5) = PSL(2, p) are

simple groups, and so by [l, Corollary I.C.3] we have yR(LF(2, p)) = R for

all R. Thus, yR(G) = R.

Remark. It is well known that a finite group all of whose abelian sub-

groups are cyclic is precisely a group which has each of its Sylow subgroups

being either cyclic or generalized quaternion; in other words, precisely when

all the Sylow subgroups have vanishing numerical invariants. A theorem of

Artin-Tate then says such a group is exactly one that has periodic cohomol-

ogy groups. Such groups are also of interest in topology where the groups

operate on spheres fixed-point-freely.

If we wish to include the Klein 4-group as a dihedral group, then the

discussion given in Case (b) remains valid.  For, Suzuki's Theorem A [5]

implies G = H x LF(2, p) once again (for p > 5) and the simplicity of LF(2, p)

yields  yRiG)= R.
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Appendix.  We present here the summary results of a computer-assisted

computation for the central annihilators of  r(SL(2, 5))« Denote by   (a, b, c, d)

the group element   (a    ), and by  ccl(y) the group ring element formed by sum-

ming the members in the conjugacy class of y.

There are nine conjugacy classes, and a Z-module basis for the center

3(ZG) is given by:

¡R= 1= (1, 0,0, 1),5 = (-1, 0, 0,-l),T=ccl((3,2, 2, 0)),

//=ccl((2, 2,2,0)), V=ccl«3, 4,1, 0», W = ccl«-l, -1, 1,0»,

X= ccl((0,-l, 1, 0»,  Y= ccKU.-l, 1, 0)),    and    Z = ccl((2,-l, 1, 0»J.

If 21 denotes the left annihilator ideal in   ZG for ViG), then a Z-module basis

for  3(ZG)H 21 is:

\A=2R-2S+T-U-W+ Y,   3 = T- U- V+ Z= (5- R)(l/- Z)(.
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