ON THE HEIGHT OF IDEALS GENERATED BY MATRICES

JOSEPH BECKER

ABSTRACT. A short geometric proof of the following algebraic theorem of Buchsbaum and Rim: Let R be the reduced local ring of an analytic variety and $g: R^t \rightarrow R^r$, $t \ge r$, be a homomorphism of R modules. Then the codimension of the support of the cokernel of $g \le t - r + 1$.

In [2, Theorem 3.5], Buchsbaum and Rim prove the following

Theorem. Let R be a noetherian ring, and g: $R^t \to R^r$, $t \ge r$, be a homomorphism of R modules. Then ht $p = \dim R_p \le t - r + 1$ for all minimal primes p in Supp(cokernel of g).

This result finds application to problems in algebraic geometry in [3]. However the proof given in [2] seems quite difficult, involving much preparation [1], and is highly algebraic in nature. In this short note I give a much easier proof for the case when R is the reduced local ring of an analytic variety. Unfortunately the proof does not seem to extend to arbitrary noetherian rings.

Let V be a complex analytic variety in \mathbb{C}^m and $R = \mathfrak{O}_V$, the sheaf of germs of holomorphic functions on V; then a R homomorphism $g: \mathbb{R}^t \to \mathbb{R}^r$ is just a holomorphic function $f: V \to \mathfrak{M}_{r \times t}(\mathbb{C})$, e.g., an element of $\mathfrak{M}_{r \times t}(\mathfrak{O}_V)$, where $\mathfrak{M}_{r \times t}$ is just the r by t matrices. In the above correspondence it is easily seen by the theory of determinants over a commutative ring that g is onto if and only if some r by r det of the matrix is a unit in R. Hence $\{x \in V: \operatorname{rank}_x f \leq r\} = \operatorname{supp}(\operatorname{coker} g)$ where $\operatorname{supp}(\operatorname{coker} g)$ denotes $\{x: \operatorname{coker}_x g \neq 0\}$ which is just locus(I) where I is the annihilator of coker g. Thus $\operatorname{codim}_V \{x \in V: \operatorname{rk}_x f \leq r\} = \operatorname{codim}_V \operatorname{locus} I = \operatorname{codim}_V \operatorname{locus} p = \operatorname{ht} p$ for all minimal primes containing I, where by codim_V we mean the maximum codimension over all points in the set.

Now $\mathfrak{M}_{r \times t}(\mathbb{C}) = \mathbb{C}^{rt}$ and the subset A of matrices of nonmaximal rank

Copyright © 1975, American Mathematical Society

Received by the editors March 6, 1974 and, in revised form, June 4, 1974. AMS (MOS) subject classifications (1970). Primary 32B15; Secondary 13C15. Key words and phrases. Height of ideal generated by matrices.

JOSEPH BECKER

form an algebraic subvariety (zeroes of dets) whose codim is well known to be t - r + 1. We include a proof of this for the sake of completeness. Now $A_{r-1} = \{a \in A: \text{rk } a = r - 1\}$ is an open dense subset of A so it suffices to compute codim A_{r-1} . Given $a \in A_{r-1}$, there exist r-1 columns of a (which by change of basis we assume are the first r-1 columns) that are linearly independent. Let c_1, \ldots, c_t denote the columns of a and $h_i(a) = [c_1, c_2, \ldots, c_{r-1}, c_i], i = r, \ldots, t$, be $r \times r$ matrices. If each det $h_i(a) = 0$, then all r by r dets of a vanish so A_{r-1} is defined by t - r + 1 equations. (Because det $h_i(a) = 0$ implies there exists a nontrivial relation, $b_{ii} \neq 0$, $\sum_{j=1}^{r-1} b_{ij}c_j + b_{ii}c_i = 0$, if some other $det[c_{k_1}, \ldots, c_{k_r}] \neq 0$ then $det[b_{k_1k_1}c_{k_1}, \ldots, b_{k_rk_r}c_{k_r}] \neq 0$, but this last matrix is generated by only r - 1 columns.)

Now let W = locus l, $l = \dim V - \dim W = \text{ht } l$ and $p \in W$. It is a standard result in local analytic geometry [5] that there is an affine linear subspace T of the ambient space such that $\dim_z T \cap W = 0$ and $\dim_z T \cap V = l$. Let $Z = T \cap V$. Note that $f(p) \in A$ and $f(Z - p) \cap A = \emptyset$. Since f has discrete fibers $(\dim f^{-1}/(p) = \dim_p T \cap W = 0)$ on Z, f(Z) is locally an l dimensional analytic set. Another standard result in analytic geometry is that if B_1, B_2 are analytic varieties then $\dim B_1 \cap B_2 \ge \dim B_1 - \operatorname{codim} B_2$ provided $B_1 \cap B_2 \neq \emptyset$. Now $f(Z) \cap A = a$ point so

 $0 = \dim f(Z) \cap A \ge \dim f(Z) - \operatorname{codim} A = l - (t - r + 1)$

i.e. t - r + 1 > l.

REFERENCES

1. D. A. Buchsbaum, A generalized Koszul complex. I, Trans. Amer. Math. Soc. 110 (1964), 183-196. MR 28 #3075.

2. D. A. Buchsbaum and D. S. Rim, A generalized Koszul complex. II: Depth and multiplicity, Trans. Amer. Math. Soc. 111 (1964), 197-224. MR 28 #3076.

3. J. Lipman, Free derivation modules on algebraic varieties, Amer. J. Math. 87 (1965), 874-898. MR 32 #4130.

4. D. Mumford, Introduction to algebraic geometry, Harvard Univ. Press, Cambridge, Mass.

5. R. Narasimhan, Introduction to the theory of analytic spaces, Lecture Notes in Math., no. 25, Springer-Verlag, Berlin and New York, 1966. MR 36 #428.

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907