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UNIFORMLY CONVEX TOTALLY ORDERED SETS

R. H. REDFIELDl

ABSTRACT.   Since a uniformly convex totally ordered set is a uniform

lattice, its uniform completion is totally ordered in a natural way.  The

assumption of uniform convexity is a small restriction because every

nearly uniform ordered space is uniformly convex.

1.  Introduction.   We investigated in [4]   (which is summarized and dis-

cussed in [5]) how partially ordered sets equipped with certain types of

Hausdorff uniformities may have their orders extended to their uniform com-

pletions.  Since the outstanding example of this procedure is the extension

of the order on the rational numbers to the real numbers, the question natur-

ally arises whether the uniform completion of any totally ordered set with

sufficiently restricted Hausdorff uniformity may be totally ordered.

In this note, we show that in the general setting of [4], total orders do

indeed extend to total orders.

Terminology left undefined here may be found in [l], [2], and [6].

Let X  be a set.   As usual, let  A(X) = {(*, x) £ X x X\x £ X\ be the

diagonal oí X.   Let U   be a uniformity on  X.   We denote the set of symmetric

entourages of U   by XIs  and note that when partially ordered by inclusion,

U    is a downwards directed set. Suppose that U is Hausdorff, and let (X, 11) be

the completion of (X, 11) at 11. Then instead of arbitrary Cauchy nets, we may re-

strict our attention to those with domain U   as follows: let x £ X and let \y ^ \8 £

A! C X be a Cauchy net converging to x. Then there exists a Cauchy net

\x ^\U £ 11s}, with domain Vls , such that  jx^ \ converges to x   and such that,

as subsets of X, \x.. } C \y A.

Let  (P, <)  be a partially ordered set.  We let

G(<) = \ix, y) £ P x P|*<y!

be the graph of <.  Let U  be a Hausdorff uniformity on  P. Let (P, 11) be

the uniform completion of (P, 11) at U.  Define a binary relation on  P  as

Received by the editors August 9, 1973 and, in revised form, February 1, 1974.

AMS (MOS) subject classifications (1970).  Primary 06A45, 54F05; Secondary

06A05, 54E15.
Key words and phrases.   Uniform ordered space, totally ordered set, uniform com-

pletion, uniform lattice, uniformly convex.

!The author would like to thank Norman Reilly for his encouragement and sup-

port during the development of these ideas.
Copyright © 1975, American Mathematical Society

289



290 r. H. REDFIELD

follows: x < y if and only if there exist Cauchy nets  ix,,|t/ e1ls} C P  and

iyy|Z/ eU^lcP   such that  i*r,!  converges to  x/jy^}  converges to y, and

xu <yu for a11 u e.?*-

If (L, <) is a lattice and if H   is a Hausdorff uniformity on  L  with re-

spect to which the lattice operations on  L   are uniformly continuous, then

we call (L, XL, <) a uniform lattice.   The following was proved in [4].

Proposition 1.1.  Let (L, U, <)  be a uniform lattice with uniform comple-

tion (L, U).   Then (L, U,< )  is a uniform lattice such that the natural em-

bedding  e  of (L, 11)  222ÍO (L, U)  is a uniformly continuous lattice isomor-

phism.   Furthermore, (L, U, ^ ) satisfies the following universal mapping

property: if  (K, $ß,  <)  is a uniformly complete uniform lattice and if f:

(L, U, <)—>(K, S, <)  is a uniformly continuous order-preserving function,

then there exists a unique uniformly continuous order-preserving function f:

(L, U, <)—>(K, 58, <)  such that  ef = /.

(We note that uniform lattices are a particularly well-behaved case.  The

analogous result for partially ordered sets requires a subtler definition of

the extended partial order (see [4] or [5]).)

2.  Uniform convexity.  Let (X, 11) be a uniform space.  We let  T(U)  de-

note the topology on X  associated with U.

In a partially ordered set (P, <), a subset A C P  is said to be convex

if a < x < b  and a, b £ A  imply x e A.  Let 12  be a uniformity on P.   We say

that (P, 11, <) (or just 11)  is locally convex if x £ U £ T(U)  implies that

there exist V £ T01) and a convex subset C C P  such that x e V C C C U,

i.e. if every neighbourhood contains a convex neighbourhood.  We say that

(P, U, <) (or just 11) is uniformly convex if for all  U £ 11  there exists  V e

U   such that  V C U  and V[x] is convex for all x £ P.   Clearly if (P, 11, <)

is uniformly convex, then it is locally convex.

Example 2.1.  In this example we construct a locally convex, nonuniform-

ly convex, Hausdorff uniformity on a totally ordered set.

Let  R  be the real numbers, let Q  be the rational numbers, and let N  be

the natural numbers.  Partially order R x R  by: (x, y) < (a, b) if and only if

x < a  and y < b.   For 22 £ N, define  U , V , W    C R x R  by
— '   — n        n        n — '

Un = {(x, y)\(x, y) < (0, 0)  and   \y - x\ < l/n\ U A(R),

Vn = {ix, y)\ix, y) > (72, 72)  and  (x, y) £ Q x Q\,

W   = U    U V .
72 72 n
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Clearly  MR) C W     and W ' = W    for all 22.   Let  (x, y), (y, z) e WC   .  If
' —     n n n '   ' -"' KJ       ' 2n

x = y  or y = z, then (x, z) £ W      C_W.   Otherwise, x 4 y  and y 4 z.   If

(x, y) £ U2n, then (x, y) < (0, 0)  and   \y - x\ < 1/2«.  Since then y < 0,

(y, z) ¿ V2n.   Thus  (y, z) £ U2n, (y, z) < (0, 0), and   \z - y\ < l/2n.  Then

(x, z) < (0, 0)  and

' ¡2 - x\ < \z - y\ + ¡y - x| < 1/272 + 1/2« = 1/«.

Thus (x, z) e UnÇ Wn.   If (x, y) e V 2n, then (x, y) > (2n, 2n) > (0, 0)  and

hence, as above, (y, z) e V 2  . Since x 4 y 4 z, x, y, z e Q  and thus (x, z)

eQ xQ.  Hence (x, z) £ V,    C W .   Therefore, W,    o w      C W .   Thus,
* •-   * . 2« —     n '      2n ¿n —     n '

\W   \n £ N\ is a filter-base for a uniformity U   on  R.   Clearly U  is locally

convex and Hausdorff, but not uniformly convex.  We note also that  T(ll) is

not discrete.

We will prove our main result for uniformly convex uniformities.  This

is no great restriction, however, since we will also show that the general

setting which allows the order to be extended in fact entails uniformly

convex uniformities.

Proposition 2.2.   Lez"  (T, .<) be a totally ordered set.   If 11   is a uniform-

ly convex Hausdorff uniformity on  T, then  (T, 11, <)  is a uniform lattice.

Proof.  Let  (/el  Let W £ "Is be such that W o W Ç U.   Let V £ 11  be

such that  V[x] is convex for all x £ T  and  V C W.   Let

V* = {(a, x, b, y)\ia, b), ix, y) £ V\.

It suffices to show that  V*i V x V ) Ç U, V*i A x A ) Ç U.   We will prove the

first containment; the second may be proved similarly.  Let (a, x, b, y) £

V*.   If a > x  and b > y  or if a < x and  b < y, then (a V x, b V y) £ V C U.

Otherwise, x > a  and y < b, or x < a  and y > b.   Suppose x < a  and y > b.

Then («, x, b, y)(Vx V) = (a, y).

(1) Suppose y > a:   Then y > a > x implies a £ V[x] since y £ V[x]

and V[x] is convex. Thus (x, a) £ V, i.e. (a, x) £ V-1. Hence

1 1{a, y) £ V~ l o V Ç W~ 1 o W = W o W Ç U.

(2) Suppose y < a: Then a > y >b implies y e \/[a] since ¿> e V[a]

and  V[a]  is convex.  That is, (a, y) £ V C U.   Similarly one may show that

if x > a  and y < b, then (a, x, b, y)(\J x\J ) = (x, b) £ U.   Therefore,

V*(Vx V)Ç U.

Theorem 2.3.   Let (T, <)  be a totally ordered set.   Let 11   be a uniform-

ly convex Hausdorff uniformity on  T.   Then (T, •<)  is a totally ordered set.
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Proof.   By Proposition 2.2, (T, XL, <) is a uniform lattice, and hence

by Proposition 1.1, we may treat (T, <)  as a sublattice of the uniform lat-

tice (T, 11, < ).

Let x, y 6 T.  Let l*,,|c/ £ U5| C T be a Cauchy net converging to x

and let  5y j, | L/ ell^i be a Cauchy net converging to y.  Let  A = {U £XLS\

xn ^y/j!"  Suppose first that  A  is cofinal in XIs.  Then  {*,i|I/ £ A! con-

verges to  x  since XL  is Hausdorff.  Thus, since x^ Vy,, = x..  for all

U £ A, {xj. V y¡,\U £ A!  converges to x.  However, since (T, U,^)  is a

uniform lattice, {x.. \J y,,\U £XLS\ converges to x V y, and thus, since  A

is cofinal, ¡XyV yn\U £ AS converges to x Vy.  Since 11   is Hausdorff, we

conclude that x V y = x, i.e., that y ;< x.  Now suppose that  A is not co-

final in XXs.  Then there exists  V £ XXs  such that for all  U C V, x^ J> y¡J,

i.e., since (T, <) is totally ordered, x„ < y y   Let

\XU    l{ U ¿V,
Zj, = <

I y y    if U Ç V.

Clearly x y < z..   for ail  (/ e 11s  and  íz,.|(/ e "s| ÇT  is a Cauchy net con-

verging to  y.  Thus x^y, and therefore (T, ^ )  is totally ordered.

Corollary 2.4.  Lei  (T, <) be a totally ordered set, and XL  a uniformly

convex Hausdorff uniformity on  T.   Let  (S, <) also be a totally ordered set

and suppose that  58  is a uniformly convex Hausdorff uniformity on S  such

that (S, 58)  is uniformly complete.   If f: (T, XL, <)—>(S, 58, <)  is a uniformly

continuous order-preserving function, then there exists a unique uniformly

continuous order-preserving function f:    (T, U, •<) —>(S, 58, <) such that

ef = /, where  e  is the canonical embedding of (T, XL) into (T, U).

Proof.  The result follows from Proposition 1.1 and Theorem 2.3.

3. Uniform ordered spaces. In [4] we showed that a natural setting for

extending a partial order on a uniform space to its uniform completion is

the category of uniform ordered spaces and uniformly continuous order-

preserving functions.  Nachbin [3] proved that every uniform ordered space is

locally convex.  Using a similar argument, we will show that every nearly

uniform ordered space is in fact uniformly convex.  Thus, by Theorem 2.3,

the natural order on the uniform completion of a totally ordered uniform or-

dered space will be a total order.

Let X  be a set.  A semiuniform structure [3] for X is a filter J   on

X x X  satisfying
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(i)  MX) Ç V  for all  V £ J;

(ii)  for all  V eî, there exists   U e ?   such that  U ° U C V.

Thus, a semiuniform structure is almost a uniformity.  We can add the condi-

tion of symmetry by considering

?* = !(/ n v-1!u, v e f\,

which is easily seen to be a uniformity on X [3].

A nearly uniform ordered space [4] is a partially ordered set  (P, <)

with a Hausdorff uniformity U  on  P   such that there exists a semiuniform

structure J   for  P  with f I J 3 G(<)  and J    =11.   A uniform ordered space

[3]  is a partially ordered set (P, <) with a Hausdorff uniformity U   and

semiuniform structure J   such that \]J = G(<)  and J    =11.

Proposition 3.1.  Every nearly uniform ordered space is uniformly convex.

Proof.  Let  (P, <) be a partially ordered set; let 11  be a Hausdorff

uniformity on  P; and suppose that  J   isa semiuniform structure for P  such

that fl? 2 Gi<) and J* = U. Let U e 11. Since J* = 11, there exists F e ?

such that F n F" l Ç U.   Let V £ î be such that V o y ç F, and let W =

VCiV-1.   If A CP, let—

Conv(/4) = Íí 6 P|there exist   a, b £ A  with  a < t < b\.

Clearly, for ail A C P, Conv (A) is a convex set containing A.  For ail

x £ P, let Lx =  Conv(W[x]).   Finally, let M = !(x, y) e P x P|y e Lj.  Clear-

ly, for ail x £ P, M[x] = L     is convex.  Thus it suffices to show that /Vf e U

and that M C U.   If (x, y) £ W, then y £ W[x] C Lx and hence (x, y) £ M. Thus

W CM, and hence M £ 11.

Let (x, y) e M.   Then y £ L   , and hence there exist a, b £ W[x]  such

that a < y < b.   Now (x, a) £ W Ç V, (a, y) £ G(<) Ç V.   Thus (x, y) £ V ° V

C F.   Also, (x, b) £ W Ç V~ \ (y, b) £ G(<) Ç V.   Thus (b, x) £ V, and hence

(y, x) £V °V ÇF.   Therefore, (x, y) e FCi F~ X Ç (/, and hence M ÇU.

Corollary 3.2.  Let (P, U, <) be a uniform ordered space.   If (P, <)  z's

totally ordered, then  (P, ■K)    is totally ordered.

Proof.  The result follows from Theorem 2.3 and Proposition 3.1.

We conclude this final section by noting that, in the totally ordered

case, most of the different types of spaces that have been mentioned are

equivalent.   Thus, the converse of Proposition 2.2 holds, as does that of

Proposition 3.1 for totally ordered sets.
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Proposition 3.3.  Let (T, <)  be a totally ordered set; let XL  be a uni-

formity on  T.   Then the following statements are equivalent:

(i) (T, XL, <) is a uniform ordered space;

(ii) (T, XL, <)  is a nearly uniform ordered space-,

(iii) 11   is Hausdorff and uniformly convex;

(iv) (T, XL, <) is a uniform lattice.

Proof.  That (i) implies (ii) is clear (cf. [4, Proposition 2.4]). By

Proposition 3.1, (ii) implies (iii).   By Proposition 2.2, (iii)  implies (iv), and

finally by [3, Proposition ll], (iv) implies (i).
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