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RESTRICTIONS OF ANALYTIC FUNCTIONS.  II

MARVIN ROSENBLUM AND JAMES ROVNYARl

ABSTRACT.  An isometric expansion is derived which recaptures any

H     function from a restriction of its boundary function to a Borel set.

1. Introduction.   Let A  be a Borel subset of the real line such that

neither A  nor its complement Ac is a Lebesgue null set. Let f(x) be a com-

plex valued measurable function on A.  In [4] we derived conditions for the

existence of a function  F(z) in  H    whose boundary function  F(x) agrees

with f(x) a.e. on A.  General methods for recapturing  F(z) from a knowledge

of f(x) have been given by Golusin and Krylov [l] and Patil [3l. When A is

an interval, say A = (O, °°), there is a more refined theory due to van Winter

[9] which shows how F(z) can be recaptured from f(x)   by means of recip-

rocal formulas of the Mellin form.   Closely related results were obtained in-

dependently by Kreln and Nudel man [2],  See also Steiner [7J.
. .       . . 2

We give a new derivation of the Mellin representation of H  .  Our main

purpose, however, is to extend the representation to the case where A  is a

general Borel set.  The proof uses Cayley inner functions and the methods

of [5] to reduce the general result to the special case where A  is an inter-

val.

2. Mellin representation of H    functions.   By  H2  we mean the space

of functions   F(z) analytic for y > 0  such that

sup I        |F(x + iy)\   dx < 00.
y >0 •/'— 00

Theorem 1 (van Winter [9J).  (i)  // ^f(t)  is a measurable function on

i—oa, 00) such that
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(i) r°°ii + e2m)\5it)\2dt<~t   -
J — oc

then

(2) F(z) = J__ C°°  z' Yl*uJ(t) dt,       0 < arg z < n,

V2^J-°°

defines a function in   7    whose boundary function  F(x) = F(x + iO) satisfies

(3) r iF(x)i2a-x=r+o° \m\2Jt,
u; jo j-oc '     '

(4) f°   |F(x)|2ax=f+~ e2m\J(t)\2dt,
-OO <X,

and indeed, more generally,

(5) ST   \F(reie)\2dr = f_2e2^(t)\2dt

for each fixed (9, 0 < 6 < n.  Conversely, if F(z) is an H    function, there

exists an essentially unique function   J(t) satisfying (1) such that (2)—(5)

hold.   The inversion formula

(Si Jit) =   lim  -i- T7".    (reie)-V^HF(rei6)eiedr

holds for each fixed 6, 0 < 8 < n, where convergence is in the metric of

L2(-oo,  oo).

(ii)  Suppose  F(x) € L  (0, oo), and define

(7) 3(t) =   lim-i^ f7,    x-^'FWax
T"-00 V2^ -,1/i

1^2227 convergence in the metric of L  (-00, 00).   Then there exists a function

F(z) in H2 such that F(x + iO) = F(x) a.e. on (O, 00)  if and only if J(i)

satisfies (1), and in this case F(z) satisfies (2)—(6).

Proof.  The space H , regarded as a Hilbert space in the usual norm,

has reproducing kernel  KQ(w, z) = (2ni)~  (w   - z)~   .  Let K be the Hilbert

space of functions

(8) G(z) = -J—  C+°° elz 3(t) dt,       0 < Re z < 27,

where 3"(r)  satisfies (1) and   ||G||     is equal to the expression in (1).   Routine

arguments show that a has reproducing kernel

KU,z) = J- P°° ¿*e^\l + elm)-ldt.
277   J-00
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Since by [8, p. 192]

J°° XS_1(1  + x)~ldx = 77CSc(z7s), 0 < Re 5  < 1,

we obtain

Kiw, z) = eiz/2KQieiw, eiz)e~iw*/2.

It follows that F(z) —» e'z/ F(eiz) is an isometry mapping H onto K with

inverse G(z) —> z~'lG(-i log z), 0 < arg z < rr. Therefore H is exactly the

set of functions in the upper half-plane of the form

Fiz) = z~lAGi-i log z)=^-z->A  f+°°  e~U lo*z3it)dt

y¡2~ñ J-°°

Let J(t) and  F(z) be related as above, and define  G(z) by (8), so G(z)

= eiz/ 2F(eiz).  Define

G(0 + zy) = -L- J+~ et(0+i^(t)dt,
277

Gin + ly) = -l-  r°°  e^^iùdt

V277   J-°°

where the integrals are taken in the mean square sense. By Parseval's for-

mula, lim G(x + zy) = G(0 + zy) as xN. 0 and lim G(x + iy) = Gin + iy) as x

y rr in the metric of L (-00, 00). The limits hold a.e. also because Fix) =

lim  Fix + iy) as  y N. 0 nontangentially a.e.  Therefore the relation

G(ö+zy)=e^^'/2F(e'(^')

holds not only for 0 < 9 < n, but also a.e. when  6 = 0, n.  Now if 0 < 6 < 27,

then

ill |C(6> + iy)\2dy = J"+~ e-y\Fie~yei6)\2 dy = ̂  \Firei9)\2 dr.

But by Parseval's formula

r°|G(cU2'y)|2¿y=  r°  e2et\3it)\2 dt.

so (3)-(5) follow. Using (8) when 0 < 6 < n and (9) when 0 = 0, 27, we ob-

tain a.e.
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y(,) = _L_ r°° e-ilye-etG(d + iy)dy
fzr-    J —oo

= _L_ P" e-i'yeM*+Me-Kypie-yeie)<ty
y/2n     -°°

= _L_  f °° (rei6)-^UF(rei6)eie dr,

Tn   J°

where the integrals are taken in the mean square sense. This yields (6) and

completes the proof of (i).  The assertions in (ii) follow directly from (i).

3.  Generalization.  Let A be a Borel subset of the real line such that

neither A nor Ac is a Lebesgue null set.   In the terminology of [5], a Cay-

ley inner function mapping A on  (O, 00) is any function £(z) which is ana-

lytic and satisfies  <f(z  ) = rf(z)    for z 4 z     and

(i) Im cf(z)> 0 for y > 0,

(ii) £(x + ¿O) = f(x - ¿0) a.e. on  (-oc, oc), and

(iii) £(x)   =   cf(x + ¿0)= £(x - ¿0) satisfies  £(x) > 0 a.e. on  A and  f(x)

< 0 a.e. on  Ac.

The general form of such a function [5, Theorem 2.2] is given by

«7>-/-»H*fef.r£ir)
where  k is a real number.   We understand that some such function is chosen

and held fixed in the discussion.  When A = Mi (a., b) where -00 < a, < b,w»,r   ) 11

<a_</>-<...<a<r7   < 00, a convenient choice is
2 2 r       r '

fw=-/4Ä)=iK'
If A = (0, 00), then necessarily rf(z) = rz where  0 < r < oc, and we may choose

We introduce the notation

9J

*

lia, ß) =-^    r and    lit, ß) =-¿ _ g*

fot a 4 &  , ß 4 ß ■> and  t real.  As noted in [5], "composition with f(r)" is

a meaningful operation in the class of a.e. defined functions on the real line.

By [5, Theorem 3-3], if f(t) £ Ll(-°°, 00) and  git) £ lHo, 00), and  a 4 a*,

ß 4 ß*, then

f+oc * r+oo

(10) J_oo Hl, a)l(t, ß)*fi£it))dt=Iiß, a) }_ocfU)dt,
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and

(11) f lit, a)lit, ß)*gitit))dt = Kß, a) r git)dt,
v J¿\ JO

where the integrals on the left are absolutely convergent.

Theorem 2.  (i) // fr(/) is a measurable function on  (-00, 00) such that

(12) P"(l + e2'f(")|5(í)|2¿«»,

then

(i3)     fu)=j- rea) "e(z) «•>-«-'*•.*(«>*
V227j-°° *-*

defines a function in H    whose boundary function Fix) = Fix + z'O) satisfies

(14) f |F(x)|2¿x= C°° \Jit)\2 dt
J& J -<x

and

(15) f    |F(x)|2¿x= P^^^IÏWI2^
J.c J — 00

Conversely, if F(z) is an H    function, there exists an essentially unique

function jit) satisfying (12) such that (13)—(15) hold.   The inversion formu-

la

(i6)^) = _L(/lim f +lim r )ñ±JlLLÍí} ¿ix)-y^u+ie)F{x)dx
yjlñ W\0 -V     e/o JA_ '       x-t-ie       b v  ;flx

holds a.e. and in the metric of L  (-°°, 00), where A+ = |x: rf(x) > 1¡  arari A_

= {x:0<cf(x)< 1|.

(ii)  For every  Fix) £ L2(A), (16) defines a function Jit) £ L2(-°o, 00).

There exists a function Fiz) in H    such that Fix + ¿0) = Fix) a.e. on A  if

and only if Jit) satisfies (12), and then (13)—(15) hold.

Proof.  Let W(t) = 1 + e2n^(i) and let  L2(W) denote the Lebesgue space

associated with the measure  W dx on   (-°°, °°). We first exhibit a special

dense subspace of L2(W).  Define  L2(WQ) similarly for WQ(t) = 1 + e2nt.  We

assert that functions of the form

(17) 3it) = lit,w)CJ0i¿it)),

where  w 4 w    and  ?n e L  (Wn), belong to   L  (W)  and span a dense subspace

of L (W).  By (10) such functions belong to  L  (W).  To see that there are
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'(-a,Ayenough to span a dense subspace, choose J0(t) = Xi.a A)^^1 ~ ^"^ ^'

where  w 4 w    and  A > 0.  It follows that  x\x■ \^<x)\<A\^^t ~ w ) belongs

to the set, and so density follows by routine arguments.

Next we exhibit a special dense subspace of H  . Namely, we assert

that functions of the form

(18) F(z) = l(z, w)F0({(z)),       y > 0,

where  w 4 uj    and  F. £ H  , belong to  H     and span a dense subspace of

H2.  Assume  FQ £ H2, w 4 w*, and define  F by. (13).  By Cauchy's formula,

FAt),  „       i      r+oo r  yt)

E0(z) = JL ^_  dt, y>0
u 2272   .2-00 t —   Z J

By (10) the function  F(x) = l(x, w)FQ(t;(x)) is in  L2(-oo, oo). We note that by

a theorem of Ryff [6], F(x) = F(x + ¿0) is the boundary function of F(z).  This

justifies the notation, but logically it is not needed here.  It will be used later.

We obtain

F(z)f(z) - r ™ dt,
J-oo  t - z

>0,

from the Cauchy representation of  EQ(z) using (10).   Thus   F £ H .  Choosing

FQ(z) = l/[z - ¿¡(w) ], we obtain  F(z) = l/(z - w  ), and so density follows.

Next we show that (13) defines an isometry  U +: ÍF(í) —> F(z) mapping

L (W) onto H . Straightforward estimates show that for each fixed z in the

upper half-plane the integral in (13) is- a continuous linear functional of  T

on  L  (W).   By what was proved above, it therefore suffices to check that

(19)

(l(t,a)30(c-(t)),l(t,ß)§0({(t)))L2(w)

= (/(z, a)F0(cf(z)), l(z, ß)G0(£(z)))   2

and

l(z, w)F0(¿j(z))

(2°) =_i_ C~ i(uzn(z)-*-^l(t, w15M(t))dt,        y>0,
^jTn  J-°°

fot any nonreal numbers   o~, ß, w and any  T., §.  e L (WQ)  and  F-, GQ  £ H

which are connected by

(21)    FAz)=-±-Ç+°° z-K-^AOdt,     GAz) = -L-\+°° z-u-^Aùdt
° ^¡Tn J-°° ° yJ2n J~°°

fot y > 0.  Here, of course, implicit use is made of Theorem 1 in knowing



RESTRICTIONS OF ANALYTIC FUNCTIONS. II 341

that Fn  and GQ exist given JQ  and §0, and conversely any FQ and GQ

arise from some  ,T     and  (-¡Q.  In fact, Theorem 1 combined with (10) yields

(19).  We obtain (20) from (10) and (21).   The details are left to the reader.

Let (? be the Hubert space with reproducing kernel   l(z, w), w 4 w  , z

4 z  ■  The elements of Ç are functions separately analytic for y > 0  and

y < 0.  We see from (10) and (11) that the linear transformations

P: C® L2(0, o.) — L2(A)    and    Q:   £ ® L2(-oo, oo) — L2(-oo, «,)

specified by

P:  /(z, u/) ® /(*) — lit, w)fi£it))    and   b=  Ä*. «") ® «W — **• uz)g(£(r)),

where  z^ is any nonreal number, / £ L  (0, °o), g £ L  (-oo, oo), and ® denotes

the Hubert space tensor product, are  isometric  isomorphisms.   Next  we

place C ® L  (0, oo) and  (_ ® L (-oo, oo) in linear isometric correspondence

by  / ® M, where  M  is the Mellin transform, so

/ ® M:  liz, w) ® fit) —  liz, w) ® l.i.m. -^- fT,    x-"A*ufix)dx
t-°° V2TJ1/T

'(/»M)"1:   /(*, «;)»*(«:) -i  /(z, tiz) ® l.i.m.-i- C*  rYl-ixgix)dx

*"—» y/2nJ~T

for each /£L (0, oo) and g e L (-oo, oo).

By construction  U = P(/ ® Al)~  Q~     maps   L  (-°°, oo) isometrically on-

to  L  (A).  Note that  L  (W) is contained in  L  (-oo, oo)  and the inclusion map-

ping is bounded by   1.  We assert that if J £ L  (W), U +: Jit) —* Fiz), and

U: Jit) —» FA(x), then  F^(x) is the restriction to  A  of the boundary func-

tion  Fix) = F(x + z'O)  of  F(z).  It is enough to check this for a set which is

dense in  L  (W).  It is true for functions of the.form (17) by direct calculation.

The general case follows by linearity and continuity.   We now have the diagram

e®L2(-o0,oo)i^.e®L2(o,oo)

jo [P

L2(_00)00)JL,L2(A)

injection restriction to A

where / ® M, P, Q, U, and  U +  ace isometric isomorphisms.

Now if j € L iW)  and if F in H     is the corresponding function given

by (13), then because  U .  and  U  ate unitary
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r\F(t)\2dt=rVl + e2^^(t)\2dt
J — oo J —oo

and

r , r+oo   _

J |F«|2a-i=|       \J(t)\2dt,

so (14) and (15) hold.

The inversion formula (16) involves an explicit calculation of  U~   ,

which we give next.  If J £ L  (-oo, oo), then

Jit) = lim £  I       -dx
e^0nJ_oo{x_t)2 + (2

a.e. and in the metric of  L  (-oo, oo). We assert that if  Uj = F, then

V i'" 7     J[X2       7 dx = -L.  f    l(x, t + iemx)-1Á+i^^F(x)dx
77 J-°° (x-t)2 +<r2 ^27? Ja+

(22)
f—±-   Ç     l(x, t - ie)*$x)- 'A + i^-^Kx) dx

\j2n   JA-

for £ real, e > 0.   Now for fixed   t and  (, the left side of (22) equals

= _L(l/-1F, (x- t+ it)'1 -(x-t- ie)~l)   ,
2772 L    (-oo,oc)

= _i_ (F, l/U - t + tf)- ! - U(x - r - if)- ')  ,      ,
2772 L    (A)

where here   and in the rest of the proof x is used as a dummy variable.  We

can derive (22) and consequently (16) by calculating   U(x - t + it)"     and

U(x - t - i()~ l.  We find that

Q- l : (x - t + ii)~ l — l(z, t + it) ® [x - cf (t + ie)*]~ 1,

U9M)-1Q-1:  (x - t + u)-1 ^ -iy/2nl(z, t + it)® x-,A-^U+ie)*X(lt0o)(x),

and

( - rdjñi(x, t + 2i)^(x)" lA- í««**^     on  A+ ,

U: (x-t+it)-1 _ |
( 0     on  A_.

Similarly

(0    on  A+,

U: (x-f-zV)-1^]     _ .   *

iV2»r/U, r-2f)çf(x)-'^-^(i-!f)  on A   .
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This implies (22) and completes the proof of (i).  The assertions in (ii) are

evident from our constructions.
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