RESTRICTIONS OF ANALYTIC FUNCTIONS. II

MARVIN ROSENBLUM AND JAMES ROVNYAK1

ABSTRACT. An isometric expansion is derived which recaptures any H^2 function from a restriction of its boundary function to a Borel set.

1. Introduction. Let Δ be a Borel subset of the real line such that neither Δ nor its complement Δ^c is a Lebesgue null set. Let f(x) be a complex valued measurable function on Δ . In [4] we derived conditions for the existence of a function F(z) in H^2 whose boundary function F(x) agrees with f(x) a.e. on Δ . General methods for recapturing F(z) from a knowledge of f(x) have been given by Golusin and Krylov [1] and Patil [3]. When Δ is an interval, say $\Delta = (0, \infty)$, there is a more refined theory due to van Winter [9] which shows how F(z) can be recaptured from f(x) by means of reciprocal formulas of the Mellin form. Closely related results were obtained independently by Krein and Nudel'man [2]. See also Steiner [7].

We give a new derivation of the Mellin representation of H^2 . Our main purpose, however, is to extend the representation to the case where Δ is a general Borel set. The proof uses Cayley inner functions and the methods of [5] to reduce the general result to the special case where Δ is an interval.

2. Mellin representation of H^2 functions. By H^2 we mean the space of functions F(z) analytic for y > 0 such that

$$\sup_{y>0}\int_{-\infty}^{+\infty} |F(x+iy)|^2 dx < \infty.$$

Theorem 1 (van Winter [9]). (i) If $\mathcal{F}(t)$ is a measurable function on $(-\infty, \infty)$ such that

Received by the editors June 12, 1974.

AMS (MOS) subject classifications (1970). Primary 30A78, 30A88; Secondary 42A76, 47B99.

Key words and phrases. H², Cayley inner function, boundary function, Mellin transform.

¹ This research was supported by NSF Grant GP-31483X. The first author also received support from the Center for Advanced Studies of the University of Virginia.

Copyright © 1975, American Mathematical Society

(1)
$$\int_{-\infty}^{+\infty} (1 + e^{2\pi t}) |\mathcal{F}(t)|^2 dt < \infty,$$

then

(2)
$$F(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} z^{-\frac{1}{2}t+it} \mathcal{F}(t) dt, \quad 0 < \arg z < \pi,$$

defines a function in H^2 whose boundary function F(x) = F(x + i0) satisfies

(3)
$$\int_0^\infty |F(x)|^2 dx = \int_{-\infty}^{+\infty} |\mathcal{F}(t)|^2 dt,$$

(4)
$$\int_{-\infty}^{0} |F(x)|^2 dx = \int_{-\infty}^{+\infty} e^{2\pi t} |\mathcal{F}(t)|^2 dt,$$

and indeed, more generally,

(5)
$$\int_0^{+\infty} |F(re^{i\theta})|^2 dr = \int_{-\infty}^{+\infty} e^{2\theta t} |\mathcal{F}(t)|^2 dt$$

for each fixed θ , $0 \le \theta \le \pi$. Conversely, if F(z) is an H^2 function, there exists an essentially unique function $\mathcal{F}(t)$ satisfying (1) such that (2)–(5) hold. The inversion formula

(6)
$$\mathcal{F}(t) = \lim_{T \to \infty} \frac{1}{\sqrt{2\pi}} \int_{1/T}^{T} (re^{i\theta})^{-\frac{1}{2}t + it} F(re^{i\theta}) e^{i\theta} dr$$

holds for each fixed θ , $0 \le \theta \le \pi$, where convergence is in the metric of $L^2(-\infty, \infty)$.

(ii) Suppose $F(x) \in L^2(0, \infty)$, and define

(7)
$$\mathcal{F}(t) = \lim_{T \to \infty} \frac{1}{\sqrt{2\pi}} \int_{1/T}^{T} x^{-\frac{1}{2}t+it} F(x) dx$$

with convergence in the metric of $L^2(-\infty, \infty)$. Then there exists a function F(z) in H^2 such that F(x+i0)=F(x) a.e. on $(0,\infty)$ if and only if $\mathcal{F}(t)$ satisfies (1), and in this case F(z) satisfies (2)–(6).

Proof. The space H^2 , regarded as a Hilbert space in the usual norm, has reproducing kernel $K_0(w, z) = (2\pi i)^{-1}(w^* - z)^{-1}$. Let K be the Hilbert space of functions

(8)
$$G(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{tz} \mathcal{F}(t) dt, \quad 0 < \text{Re } z < \pi,$$

where $\mathcal{F}(t)$ satisfies (1) and $\|G\|^2$ is equal to the expression in (1). Routine arguments show that \mathcal{K} has reproducing kernel

$$K(w, z) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{tz} e^{tw^*} (1 + e^{2\pi t})^{-1} dt.$$

Since by [8, p. 192]

$$\int_0^\infty x^{s-1} (1+x)^{-1} dx = \pi \csc(\pi s), \quad 0 < \text{Re } s < 1,$$

we obtain

$$K(w, z) = e^{iz/2} K_0(e^{iw}, e^{iz}) e^{-iw^*/2}.$$

It follows that $F(z) \to e^{iz/2} F(e^{iz})$ is an isometry mapping H^2 onto K with inverse $G(z) \to z^{-\frac{1}{2}} G(-i \log z)$, $0 < \arg z < \pi$. Therefore H^2 is exactly the set of functions in the upper half-plane of the form

$$F(z) = z^{-\frac{1}{2}}G(-i \log z) = \frac{1}{\sqrt{2\pi}} z^{-\frac{1}{2}} \int_{-\infty}^{+\infty} e^{-it \log z} \mathcal{F}(t) dt$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} z^{-\frac{1}{2}-it} \mathcal{F}(t) dt.$$

Let $\mathcal{F}(t)$ and F(z) be related as above, and define G(z) by (8), so G(z) = $e^{iz/2}F(e^{iz})$. Define

(9)
$$G(0+iy) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{t(0+iy)} \mathcal{F}(t) dt,$$

$$G(\pi+iy) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{t(\pi+iy)} \mathcal{F}(t) dt$$

where the integrals are taken in the mean square sense. By Parseval's formula, $\lim G(x+iy)=G(0+iy)$ as x>0 and $\lim G(x+iy)=G(\pi+iy)$ as $x>\pi$ in the metric of $L^2(-\infty,\infty)$. The limits hold a.e. also because $F(x)=\lim F(x+iy)$ as y>0 nontangentially a.e. Therefore the relation

$$G(\theta + iy) = e^{i(\theta + iy)/2} F(e^{i(\theta + iy)})$$

holds not only for $0 < \theta < \pi$, but also a.e. when $\theta = 0$, π . Now if $0 \le \theta \le \pi$, then

$$\int_{-\infty}^{+\infty} |G(\theta + iy)|^2 dy = \int_{-\infty}^{+\infty} e^{-y} |F(e^{-y}e^{i\theta})|^2 dy = \int_{0}^{\infty} |F(re^{i\theta})|^2 dr.$$

But by Parseval's formula

$$\int_{-\infty}^{+\infty} |G(\theta+iy)|^2 dy = \int_{-\infty}^{+\infty} e^{2\theta t} |\mathcal{F}(t)|^2 dt.$$

so (3)–(5) follow. Using (8) when $0 < \theta < \pi$ and (9) when $\theta = 0$, π , we obtain a.e.

$$\begin{split} \mathcal{F}(t) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-ity} e^{-\theta t} G(\theta + iy) \, dy \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-ity} e^{i\theta(\frac{1}{2} + it)} e^{-\frac{1}{2}y} F(e^{-y} e^{i\theta}) \, dy \\ &= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} (re^{i\theta})^{-\frac{1}{2} + it} F(re^{i\theta}) e^{i\theta} \, dr, \end{split}$$

where the integrals are taken in the mean square sense. This yields (6) and completes the proof of (i). The assertions in (ii) follow directly from (i).

- 3. Generalization. Let Δ be a Borel subset of the real line such that neither Δ nor Δ^c is a Lebesgue null set. In the terminology of [5], a Cayley inner function mapping Δ on $(0, \infty)$ is any function $\xi(z)$ which is analytic and satisfies $\xi(z^*) = \xi(z)^*$ for $z \neq z^*$ and
 - (i) Im $\xi(z) > 0$ for $\gamma > 0$,
 - (ii) $\xi(x+i0) = \xi(x-i0)$ a.e. on $(-\infty, \infty)$, and
- (iii) $\xi(x) \stackrel{\text{def}}{=} \xi(x+i0) = \xi(x-i0)$ satisfies $\xi(x) > 0$ a.e. on Δ and $\xi(x) < 0$ a.e. on Δ^c .

The general form of such a function [5, Theorem 2.2] is given by

$$\xi(z) = -1/\exp\left(k + \int_{\Delta} \frac{1+tz}{t-z} \frac{dt}{1+t^2}\right)$$

where k is a real number. We understand that some such function is chosen and held fixed in the discussion. When $\Delta = \bigcup_{1}^{r} (a_{j}, b_{j})$ where $-\infty < a_{1} < b_{1} < a_{2} < b_{2} < \cdots < a_{r} < b_{r} < \infty$, a convenient choice is

$$\xi(z) = -1 / \exp\left(\int_{\Delta} \frac{dt}{t-z}\right) = -\prod_{1}^{r} \frac{a_{j}-z}{b_{j}-z}.$$

If $\Delta = (0, \infty)$, then necessarily $\xi(z) = rz$ where $0 < r < \infty$, and we may choose $\xi(z) = z$.

We introduce the notation

$$l(\alpha, \beta) = \frac{\xi(\alpha) - \xi(\beta)^*}{\alpha - \beta^*}$$
 and $l(t, \beta) = \frac{\xi(t) - \xi(\beta)^*}{t - \beta^*}$

for $\alpha \neq \alpha^*$, $\beta \neq \beta^*$, and t real. As noted in [5], "composition with $\xi(t)$ " is a meaningful operation in the class of a.e. defined functions on the real line. By [5, Theorem 3.3], if $f(t) \in L^1(-\infty, \infty)$ and $g(t) \in L^1(0, \infty)$, and $\alpha \neq \alpha^*$, $\beta \neq \beta^*$, then

(10)
$$\int_{-\infty}^{+\infty} l(t, \alpha) l(t, \beta)^* f(\xi(t)) dt = l(\beta, \alpha) \int_{-\infty}^{+\infty} f(t) dt,$$

and

(11)
$$\int_{\Delta} l(t, \alpha) l(t, \beta)^* g(\xi(t)) dt = l(\beta, \alpha) \int_0^{\infty} g(t) dt,$$

where the integrals on the left are absolutely convergent.

Theorem 2. (i) If $\mathcal{F}(t)$ is a measurable function on $(-\infty, \infty)$ such that

(12)
$$\int_{-\infty}^{+\infty} (1 + e^{2\pi \xi(t)}) |\mathcal{F}(t)|^2 dt < \infty,$$

then

(13)
$$F(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{\xi(t) - \xi(z)}{t - z} \, \xi(z)^{-\frac{1}{2} - i \, \xi(t)} \mathcal{F}(t) \, dt$$

defines a function in H^2 whose boundary function F(x) = F(x + i0) satisfies

(14)
$$\int_{\Lambda} |F(x)|^2 dx = \int_{-\infty}^{+\infty} |\mathcal{F}(t)|^2 dt$$

and

(15)
$$\int_{\Lambda^c} |F(x)|^2 dx = \int_{-\infty}^{+\infty} e^{2\pi \xi(t)} |\mathcal{F}(t)|^2 dt.$$

Conversely, if F(z) is an H^2 function, there exists an essentially unique function F(t) satisfying (12) such that (13)–(15) hold. The inversion formula

$$(16) \mathcal{F}(t) = \frac{1}{\sqrt{2\pi}} \left(\lim_{\epsilon \to 0} \int_{\Delta_{+}} + \lim_{\epsilon \neq 0} \int_{\Delta_{-}} \right) \frac{\xi(x) - \xi(t + i\epsilon)}{x - t - i\epsilon} \, \xi(x)^{-\frac{1}{2} + i\xi(t + i\epsilon)} F(x) \, dx$$

holds a.e. and in the metric of $L^2(-\infty, \infty)$, where $\Delta_+ = \{x: \xi(x) > 1\}$ and $\Delta_- = \{x: 0 < \xi(x) < 1\}$.

(ii) For every $F(x) \in L^2(\Delta)$, (16) defines a function $\mathcal{F}(t) \in L^2(-\infty, \infty)$. There exists a function F(z) in H^2 such that F(x+i0) = F(x) a.e. on Δ if and only if $\mathcal{F}(t)$ satisfies (12), and then (13)–(15) hold.

Proof. Let $W(t) = 1 + e^{2\pi\xi(t)}$ and let $L^2(W)$ denote the Lebesgue space associated with the measure W dx on $(-\infty, \infty)$. We first exhibit a special dense subspace of $L^2(W)$. Define $L^2(W_0)$ similarly for $W_0(t) = 1 + e^{2\pi t}$. We assert that functions of the form

(17)
$$\mathcal{F}(t) = l(t, w)\mathcal{F}_0(\xi(t)),$$

where $w \neq w^*$ and $\mathcal{F}_0 \in L^2(W_0)$, belong to $L^2(W)$ and span a dense subspace of $L^2(W)$. By (10) such functions belong to $L^2(W)$. To see that there are

enough to span a dense subspace, choose $\mathcal{F}_0(t) = \chi_{(-A,A)}(t)/(t-\xi(w)^*)$, where $w \neq w^*$ and A > 0. It follows that $\chi_{\{x: |\xi(x)| < A\}}(t)/(t-w^*)$ belongs to the set, and so density follows by routine arguments.

Next we exhibit a special dense subspace of H^2 . Namely, we assert that functions of the form

(18)
$$F(z) = l(z, w)F_0(\xi(z)), \quad y > 0,$$

where $w \neq w^*$ and $F_0 \in H^2$, belong to H^2 and span a dense subspace of H^2 . Assume $F_0 \in H^2$, $w \neq w^*$, and define F by (18). By Cauchy's formula,

$$F_0(z) = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} \frac{F_0(t)}{t-z} dt, \quad y > 0.$$

By (10) the function $F(x) = l(x, w)F_0(\xi(x))$ is in $L^2(-\infty, \infty)$. We note that by a theorem of Ryff [6], F(x) = F(x + i0) is the boundary function of F(z). This justifies the notation, but logically it is not needed here. It will be used later. We obtain

$$F(z) = \int_{-\infty}^{+\infty} \frac{F(z)}{t-z} dt, \quad y > 0,$$

from the Cauchy representation of $F_0(z)$ using (10). Thus $F \in H^2$. Choosing $F_0(z) = 1/[z - \xi(w)^*]$, we obtain $F(z) = 1/(z - w^*)$, and so density follows.

Next we show that (13) defines an isometry U_+ : $\mathcal{F}(t) \to F(z)$ mapping $L^2(W)$ onto H^2 . Straightforward estimates show that for each fixed z in the upper half-plane the integral in (13) is a continuous linear functional of \mathcal{F} on $L^2(W)$. By what was proved above, it therefore suffices to check that

(19)
$$\langle l(t, \alpha) \mathcal{F}_{0}(\xi(t)), l(t, \beta) \mathcal{G}_{0}(\xi(t)) \rangle_{L^{2}(W)}$$

$$= \langle l(z, \alpha) F_{0}(\xi(z)), l(z, \beta) G_{0}(\xi(z)) \rangle_{U^{2}}$$

and

$$l(z, w)F_0(\xi(z))$$

(20)
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} l(t,z)^* \xi(z)^{-\frac{1}{2}} - i \xi(t) l(t,w) \mathcal{F}_0(\xi(t)) dt, \qquad y > 0,$$

for any nonreal numbers α , β , w and any \mathcal{F}_0 , $\mathcal{G}_0 \in L^2(W_0)$ and F_0 , $G_0 \in H^2$ which are connected by

(21)
$$F_0(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} z^{-\frac{1}{2}-it} \mathcal{F}_0(t) dt$$
, $G_0(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} z^{-\frac{1}{2}-it} \mathcal{G}_0(t) dt$

for y > 0. Here, of course, implicit use is made of Theorem 1 in knowing

that F_0 and G_0 exist given \mathcal{F}_0 and \mathcal{G}_0 , and conversely any F_0 and G_0 arise from some \mathcal{F}_0 and \mathcal{G}_0 . In fact, Theorem 1 combined with (10) yields (19). We obtain (20) from (10) and (21). The details are left to the reader.

Let C be the Hilbert space with reproducing kernel $l(z, w), w \neq w^*, z$ $\neq z^*$. The elements of \mathcal{C} are functions separately analytic for y > 0 and y < 0. We see from (10) and (11) that the linear transformations

$$P: \mathcal{C} \otimes L^2(0, \infty) \to L^2(\Delta)$$
 and $Q: \mathcal{C} \otimes L^2(-\infty, \infty) \to L^2(-\infty, \infty)$ specified by

 $P: l(z, w) \otimes f(t) \rightarrow l(t, w) f(\xi(t))$ and $Q: l(z, w) \otimes g(t) \rightarrow l(t, w) g(\xi(t))$, where w is any nonreal number, $f \in L^2(0, \infty)$, $g \in L^2(-\infty, \infty)$, and \otimes denotes the Hilbert space tensor product, are isometric isomorphisms. Next we place $\mathcal{C} \otimes L^2(0, \infty)$ and $\mathcal{C} \otimes L^2(-\infty, \infty)$ in linear isometric correspondence by $I \otimes M$, where M is the Mellin transform, so

$$l \otimes M$$
: $l(z, w) \otimes f(t) \longrightarrow l(z, w) \otimes \lim_{T \to \infty} \frac{1}{\sqrt{2\pi}} \int_{1/T}^{T} x^{-\frac{1}{2} + it} f(x) dx$

 $(I \otimes M)^{-1} \colon l(z, w) \otimes g(t) \to l(z, w) \otimes \underset{T \to \infty}{\text{l.i.m.}} \frac{1}{\sqrt{2\pi}} \int_{-T}^{+T} t^{-\frac{1}{2}-ix} g(x) dx$

for each $f \in L^2(0, \infty)$ and $g \in L^2(-\infty, \infty)$.

and

By construction $U = P(I \otimes M)^{-1}Q^{-1}$ maps $L^{2}(-\infty, \infty)$ isometrically onto $L^2(\Delta)$. Note that $L^2(W)$ is contained in $L^2(-\infty, \infty)$ and the inclusion mapping is bounded by 1. We assert that if $\mathcal{F} \in L^2(W)$, $U_+: \mathcal{F}(t) \to F(z)$, and $U: \mathcal{F}(t) \to F_{\Delta}(x)$, then $F_{\Delta}(x)$ is the restriction to Δ of the boundary function F(x) = F(x + i0) of F(z). It is enough to check this for a set which is dense in $L^2(W)$. It is true for functions of the form (17) by direct calculation. The general case follows by linearity and continuity. We now have the diagram

$$\begin{array}{c} \mathcal{C} \otimes L^{2}(-\infty, \infty) \xrightarrow{I \otimes M} \mathcal{C} \otimes L^{2}(0, \infty) \\ & \downarrow Q & \downarrow P \\ L^{2}(-\infty, \infty) \xrightarrow{U} L^{2}(\Delta) \\ \text{injection} & \uparrow \text{restriction to } \Delta \\ & L^{2}(W) \xrightarrow{U_{+}} H^{2} \end{array}$$

where $I \otimes M$, P, Q, U, and U_+ are isometric isomorphisms.

Now if $\mathcal{F} \in L^2(W)$ and if F in H^2 is the corresponding function given by (13), then because U_{+} and U are unitary

$$\int_{-\infty}^{+\infty} |F(t)|^2 dt = \int_{-\infty}^{+\infty} [1 + e^{2\pi \xi(t)}] |\mathcal{F}(t)|^2 dt$$

and

$$\int_{\Delta} |F(t)|^2 dt = \int_{-\infty}^{+\infty} |\mathcal{F}(t)|^2 dt,$$

so (14) and (15) hold.

The inversion formula (16) involves an explicit calculation of U^{-1} , which we give next. If $\mathcal{F} \in L^2(-\infty, \infty)$, then

$$\mathcal{F}(t) = \lim_{\epsilon \to 0} \frac{\epsilon}{\pi} \int_{-\infty}^{+\infty} \frac{\mathcal{F}(x)}{(x-t)^2 + \epsilon^2} dx$$

a.e. and in the metric of $L^2(-\infty, \infty)$. We assert that if $U\mathcal{F} = F$, then

$$\frac{\epsilon}{\pi} \int_{-\infty}^{+\infty} \frac{\mathcal{F}(x)}{(x-t)^2 + \epsilon^2} dx = \frac{1}{\sqrt{2\pi}} \int_{\Delta_+} l(x, t+i\epsilon)^* \xi(x)^{-\frac{1}{2} + i \xi(t+i\epsilon)} F(x) dx$$
(22)
$$+ \frac{1}{\sqrt{2\pi}} \int_{\Delta_-} l(x, t-i\epsilon)^* \xi(x)^{-\frac{1}{2} + i \xi(t-i\epsilon)} F(x) dx$$

for t real, $\epsilon > 0$. Now for fixed t and ϵ , the left side of (22) equals

$$\frac{1}{2\pi i} \int_{-\infty}^{+\infty} \mathcal{F}(x) [(x-t-i\epsilon)^{-1} - (x-t+i\epsilon)^{-1}] dx$$

$$= \frac{1}{2\pi i} \langle U^{-1}F, (x-t+i\epsilon)^{-1} - (x-t-i\epsilon)^{-1} \rangle_{L^{2}(-\infty,\infty)}$$

$$= \frac{1}{2\pi i} \langle F, U(x-t+i\epsilon)^{-1} - U(x-t-i\epsilon)^{-1} \rangle_{L^{2}(\Delta)},$$

where here and in the rest of the proof x is used as a dummy variable. We can derive (22) and consequently (16) by calculating $U(x - t + i\epsilon)^{-1}$ and $U(x - t - i\epsilon)^{-1}$. We find that

$$Q^{-1}: (x - t + i\epsilon)^{-1} \to l(z, t + i\epsilon) \otimes [x - \xi(t + i\epsilon)^*]^{-1},$$

$$(I \otimes M)^{-1}Q^{-1}: (x - t + i\epsilon)^{-1} \to -i\sqrt{2\pi}l(z, t + i\epsilon) \otimes x^{-\frac{1}{2}-i\xi(t+i\epsilon)^*}\chi_{(1,\infty)}(x),$$

and

$$U: (x-t+i\epsilon)^{-1} \longrightarrow \begin{cases} -i\sqrt{2\pi}l(x, t+i\epsilon)\xi(x)^{-\frac{1}{2}-i}\xi(t+i\epsilon)^{\frac{1}{2}} & \text{on } \Delta_+, \\ 0 & \text{on } \Delta_-. \end{cases}$$

Similarly

$$U: (x-t-i\epsilon)^{-1} \to \begin{cases} 0 & \text{on } \Delta_+, \\ i\sqrt{2\pi}l(x, t-i\epsilon)\xi(x)^{-\frac{1}{2}-i\xi(t-i\epsilon)^*} & \text{on } \Delta_-. \end{cases}$$

This implies (22) and completes the proof of (i). The assertions in (ii) are evident from our constructions.

REFERENCES

- 1. G. M. Golusin and W. J. Krylov, Generalization of a formula of Carleman and its application to analytic continuation, Mat. Sb. 40 (1933), 144-149.
- 2. M. G. Krein and P. Ja. Nudel man, Certain new problems for functions of a Hardy class and for continual families of functions with double orthogonality, Dokl. Akad. Nauk SSSR 209 (1973), 537-540 = Soviet Math. Dokl. 14 (1973), 435-439. MR 47 #9156.
- 3. D. J. Patil, Representation of H^p-functions, Bull. Amer. Math. Soc. 78 (1972), 617-620. MR 45 #7069.
- 4. M. Rosenblum and J. Rovnyak, Restrictions of analytic functions. I, Proc. Amer. Math. Soc. 48 (1975), 113-119.
- 5. ——, Cayley inner functions and best approximation, J. Approximation Theory (to appear).
- J. V. Ryff, Subordinate H^p functions, Duke Math. J. 33 (1966), 347-354.
 MR 33 #289.
- 7. A. Steiner, Zum Mechanismus der Quasianalytizität gewisser Randfunktionen auf endlichen Intervallen, Ann. Acad. Sci Fenn. Ser. A I No. 459 (1970). MR 41 #8681.
- 8. E. C. Titchmarsh, Theory of Fourier integrals, 2nd ed., Oxford Univ. Press, New York, 1948.
- 9. C. van Winter, Fredholm equations on a Hilbert space of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 103-139.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VIRGINIA, CHARLOTTESVILLE, VIRGINIA 22903