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NONFACTORIZATION OF FUNCTIONS IN BANACH
SUBSPACES OF  Ll(G)

LEONARD Y. H. YAP

ABSTRACT.  In this note we first prove a theorem on factorization of

functions in certain subsets of   L  (G), where   G is anondiscrete locally com-

pact Abelian group with dual group   G.  One of the corollaries of this theorem

answers a question of R. Larsen concerning the algebras of functions with

Fourier transforms in   LP(G).   The other corollaries contain nonfactorization

results which sharpen some known theorems.

Throughout this note  G  denotes a nondiscrete locally compact Abelian

group with dual group G.   For A, B C L (G), the sets 1/ * g: f £ A, g £ B]

and ÍS^Lj f. * g.: f. £ A, g. £ B, n = 1, 2, 3, • • • ! will be denoted by A * B

and   [A * ß], respectively.  For   1 < p < oo, define  AP(G) = {/ £ L1(G): f £

LHg)] and   ||/||^ö= 11/11 ! + .\\J\\p for / £ AP(G).  The Banach algebras   (ApiG),

|| •  || .ö) have been studied by many authors (see the survey article by Larsen

[2]).  For  1 < p < q < oo, we have  AqiG) * ApiG) C ApiG), and Larsen [2] has

raised the question:  When, if ever, is AqiG) * ApiG) - ApiG)? The answer to this

question is given in a corollary (see Corollary 1 below) of the following theo-

rem, the proof of which is based on an idea first used in Martin and Yap [3,

p. 218].

Theorem 1.   Let A, B  be subsets of Ll(G) such that A =[f: f £ A]C

Lp(G) ¡or some p £ (0, oc) and B C [A * B].  Then  B C LT(G) ¡or all r £ (0, <*].

Proof.  It is clear that  B C LT(G) tot all  r £ [p, oo]. Now consider h £ B

and  r £ (0, p).  Choose a positive integer N  such that  p/2    < r.   By repeated

use of the condition  B C [A *B], we can write  h = h, + • • •  + h     with  h . =
i. ~    m '

fl* f2* ...  * ¡ N * g, where f. £ A, g £ B.  Since f. £ Lp(G), it follows from

Holder's inequality that

a1*f2*.--*f2Nr= /72---/«
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j^/9/V   îj c* ti/")N   * A
is in  Lp/      (G).  Since g is bounded, we have A. e Lp/      (G) and hence h.

£ LT(G).  Thus  h £ LT(G) tot all r e (0, p).  This completes the proof.

We now give some sample corollaries of Theorem 1.

Corollary 1.   Lez   1 < p < q < 00. Tz5e7z   [Aq(G) * AP(G)] is a proper sub-

spzzce of Ap(G).

Proof. Since AP(G) is a "character" Segal algebra, it follows that

AP(G)" ft Lr(G) for some r in (0, oc) (see Wang [4] for details).  The conclu-

sion, in view of Theorem 1, is now clear.

For  Kf<«, define  BP(G) = Lr(G) n LP(G) and  ||/||   fi = ||/||, + ||/||fi

for / e BP(G).  It is well known [5], [4], [l] that  [BP(G) * BP(G)] is a proper

subspace of BP(G) fot  1 < p < 00 (and  G nondiscrete). Now we can prove

the following stronger result.

Corollary 2.   For  1 < p < q < 00, [ßp(G) * Bq(G)] is a proper subspace

of Bq(G).

Proof. Clearly  [Bp(G) * BqiG)] C B9(G). By the Hausdorff-Young theo-

rem we have  BpiG)   C LriG) for some  r.   The desired conclusion follows

immediately from Theorem 1 and the fact that  Bq(G) is a "character" Segal

algebra (see Wang [4]).

Let T be the circle group.   For each positive integer k, define C (T)

to be the space of all functions with  k continuous derivatives, and norm

Ck(T) by

-k
=   max   max  |/(j)(x)|.

C        Os/s* xeT

It is easy to see that we have the chain [4, p. 234]

(1)    ••• CCfe + 1(T)CCfe(T)C. CC(T) C- C Lr(T) CLS(T)C-.,

where r > s > 1.  Even though  C (T), k > 1, is not a "character" Segal alge-

bra, we nevertheless have  C (T)   ¡2 LT(l) for some r in  (0, 00) (see [4]).

The following corollary, in view of Theorem 1, is now immediate.

Corollary 3.  // A, B  are any two sets from the chain (1) with A D B,

Í7ze7z   [A * B] zs zz proper subspace of B.

Remarko The special case A = B of Corollary 3 was obtained by Wang

[4]. It is now clear that all the nonfactorization results in Wang's paper can

be extended in the same way.

From Theorem 1 we see that if A, B  are subsets of L (G) with
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Â C LP(G), B t LriG) for some  p, r in  (0, «,), then  B </[A * B]. Thus, for

the purpose of obtaining nonfactorization results, it is of interest to have

conditions on   B  which would imply   B <t- Lr(G) tot some  r in  (0, oc).  The con-

dition (called Property P) given by Wang [4, p. 235] for L -dense Banach subalgebras

(B, ||-||o) of  L   (G) is also meaningful when   (B, |H|q) is a Banach subspace

of  L  (G).  The following extension of the nonfactorization theorem in Wang

[4, Theorem 4.l] can be proved by using Theorem 1 above and the idea used

in Wang's proof.

Theorem 2.   Let A  be a subset of L  (G) zzzzz;^  A C Lpiô) for some  p  in

(0, oc).   Let  B be  a subspace of   L  (G) such that  (B, IHIr)  is Banach space

having Property P and ||-||j < M|[.||ß for some constant  M.   Then  B f. [A * B].
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ful comments on the material presented here.
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