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SOME BAIRE SPACES FOR WHICH BLUMBERG'S

THEOREM DOES NOT HOLD

H. E. WHITE, JR.

ABSTRACT. First, in the second section, we describe a class of Baire

spaces for which Blumberg's theorem does not hold. Then, in the third sec-

tion, we discuss Blumberg's theorem for P-spaces.

1. In [2], J. C. Bradford and C. Goffman proved that a metrizable space

X is a Baire space if and only if the following statement, called Blumberg's

theorem, holds.

1.1   If f  is a real valued ¡unction defined on  X, then there is a dense

subset  D of X such that f\D  is continuous.

It follows from their proof that every topological space for which 1.1

holds is a Baire space.  In [l5], the author gave several examples of com-

pletely regular, Hausdorff, Baire spaces for which, if  2      = K,, 1.1 does not

hold (see also [13], [14]).  In §2 we establish, using a lemma from [14], a re-

sult which shows that there are a number of Baire spaces for which 1.1 does

not hold.

2. For any topological space  X, we denote the weight of X, the pseudo-

weight of X, the density character of  X, and the ring of all bounded real val-

ued, continuous functions defined.on  X  by  wX, rrwX, 8X, and  C  (X), respec-

tively (see [4, p. 619]).  For any subset  A  of  X, we denote the closure of  A

by  cl A.  We denote the set of all real numbers by  R.

2.1  Theorem. Suppose  X is a Baire space of cardinality   2       such that

(a) X  satisfies the countable chain condition,

(b) wX = 8X = 2N°, and

(c) every set of the first category in  X  is nowhere dense in  X.

Then 1.1 does not hold for X.

v

Proof.   Let & denote a base for the topology J   on  X  of cardinality   2

such that 0, X £ &,  We may assume that  A is closed under countable union.
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Let m denote the set of all real valued functions defined on  X that are

measurable  (§), where  S is the ff-algebra generated by  ÍB.  We shall now prove

the following statement.

2.2 Suppose /: X —» R  and there is a dense subset  D  of  X  such that

f\D is continuous.  Then there ¡s g in 1  such that  {x £ X: ¡(x) = g(x)\ is

dense in  X.

Because (a) holds, there is a function y: J  —' 93 such that for each  U

in ¡X, y(U) is a dense subset of  U.   By Lemma 1.1 of [14] (see also [6, p.

202], there is a  Cj  set   K containing  D  and a continuous, real valued func-

tion  h defined on   K such that  h\D = f\D.  Let  {V  : n £ N\ (N denotes the

set of natural numbers) denote a base for the usual topology on  R.  For each

72 in  N, choose   U     in  3"  such that  h~   IV  ] = U    n K.   Suppose  K = (\{G   :
' 77 77 77 rr 77

72 £ N\, where each  G    is open. Let C denote the union of Uí^ ~ yiG  ):

n £ N} and Uit/n ~ YÍU„)• n £ N\, and let  W = y(X ~ cl C). Then, because

(c) holds, W is dense in  X.  It is easily checked that  W C K and, for each n

in  N, ih\W)~llVn] m yiUn) n W.   So, if we define g  by letting

ihix)    if  x£W,Íhix)    if x e W,

0 if  x £ X ~ W,

then g £ DU. And the set fx e X: fix) = g(x)i is dense in X because it con-

tains d n w.
M K

Because   1381 = 2     , the cardinality of  ô is  2       [9, p. 26, exercise 9J.

Now ii h em, then there is a sequence  (/>   )     ..  of functions in )H  such that

each  h    has finite range and lim      _¡. h  ix) = />(x) for all x in  X.   Therefore
77 O 73—'OC        n

jJH| = 2  °.  The proof of Theorem 2.1 will be completed if we prove the follow-

ing statement.

2.3 There is a function f: X —> R  such that if g e DE, then  |jx e X:

fix) = g(x)S| < 2  °.

But 2.3 follows from a standard argument; see, for example, [8, p. 148J.

2.4 Proposition.  Suppose X  is a Baire space of cardinality  2      such

that   \C  (X)| = 8X = 2    , and either X is perfectly normal or extremally dis-

connected [7, exercise 1H].   Then 1.1 does not hold for X.

The proof of 2.4 is similar to the proof of 2.3. If X is perfectly normal,

then 2.2 is true when ÍB = J. And, if X is extremally disconnected, then 2.2

is true if m = C (X) and / is assumed to be bounded on X  [7, exercise 6mL

Remarks.  (1) Proposition 2.4 is false if the hypothesis that  |C*(X)| =

2      is replaced by the hypothesis that wX =2     .
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(2) Statements 2.1 and 2.5 remain true if the hypothesis that  wX = 2

is replaced by the hypothesis that  nwX = 2     . However, if  X is regular,

rrwX = 2     , and  X  satisfies the countable chain condition, then  wX = \C (X)|

= 2N° (see 2.2 and 2.4 of [4]).

2.5 Proposition. Suppose 2 = K, and that (X, 'S) is a Baire space

that satisfies 2.1(a) and 2.1(b)- If no nonempty element of J is separable,

then there is a dense subspace   Y of X  of cardinality   2      such that

(1) V  is a Baire space that satisfies (a), (b), and (c) of 2.1, and

(2) Y  is hereditarily Lindelöf.

Proof.  Let 33  be as in the proof of 2.1, and let J  denote the family of

all nowhere dense subsets  F of  X  such that  X ~ F £ J3.    Because  X  satis-

fies 2.1(a), if  K is a nowhere dense subset of X, then there is  F  in  J"   such

that  KCF  (let  F = X ~ y(X ~ cl K)).

Because   |j | = 2     , we can construct, using the argument in [8, pp. 146—

147], a subset   Y of  X  such that  B Ci Y 4 0  fot every nonempty  B  in  33  and

\F O y| < K0  for every  F in  J.  It is clear that   Y is dense in  X  and that it

satisfies (a) and (b) of 2.1.  Because  \Y Ci K\ < KQ for every nowhere dense

subset   K of X, Y  satisfies (2) and a subset of   y  is nowhere dense in   y  if

and only if it is countable. Hence   y is a Baire space which satisfies (c) of

2.1.

We conclude this section with some examples which illustrate the pre-

ceding results.  We assume that   2      = N,   throughout these examples.

(1) Suppose   (X, J ) is a Souslin line.   By this we mean that J   is the in-

terval topology induced by a total order on  X, and that  (X, J ) is a compact,

connected space which satisfies the countable chain condition but which has

no nonempty separable open subsets. It is clear that  X  satisfies 2.1(a) and

2.1(b).  By Lemma 11 of [lO], X  satisfies 2.1(c). Therefore Theorem 2.1 im-

plies that 1.1 does not hold for X.  Because  X is perfectly normal, this fol-

lows from 2.4, too.  X  seems to be the only known example of a first count-

able, completely regular, Hausdorff, Baire space for which 1.1 does not hold.

(2) Suppose  X  is a quasi-regular [ll, p. 1641 T.   Baire space of weight

2       which has no isolated points, and which admits a category measure [12,

p. 156]. Then, by 2.1, any dense subset of X of cardinality  2      is a Baire

space for which 1.1 does not hold.

(2a) Let J denote the density topology on the real line R. It was shown

in [15] that (R, J ) is a Baire space for which 1.1 does not hold. This follows

from 2.1 because (R, J) admits a category measure. Indeed, this follows from

2.1 even if we replace the continuum hypothesis with the hypothesis that any
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subset of  R  of cardinality  < 2       has a Lebesgue measure 0.  And, if  (y, U)

is a compactification of (R, J ), then any dense subset of   Y of cardinality

2       is a Baire space which satisfies the hypothesis of 2.1.

(2b) Let  5 denote the Stone space of the Boolean algebra A-/JÏ, where

i is the set of all Lebesgue measurable subsets of [O,  l] and Jl  is the

subset of X   of sets of Lebesgue measure 0.  Then  S is a compact, Haus-

dorff space which admits a category measure   [11, p. 1631, and which has no

isolated points.  Therefore 1.1 does not hold for the Baire space Z constructed

in [ll] such that  Z x Z  is of the first category.   Because  5  is extremally

disconnected, this follows from 2.4, too.

(3) Let  X = R x R  and let   li denote the product topology on   X induced

by the density topology on   R.   Then  X  satisfies (a) and (b) of 2.1.  However,

it, does not satisfy 2.1(c) because the set  D - {(x, y) £ X: x - y  is rational}

is a dense subset of X  which is of the first category in   X.  Because no non-

empty open subset of X  is separable, it follows from 2.5 that there is a dense

subset   y  of X  which satisfies the hypothesis of 2.1. Note that if   Y is ob-

tained as in the proof of 2.5, then the Lebesgue measure of   y is 0.  The au-

thor does not know whether 1.1 holds for X.

3.  Obviously, 1.1 holds for every discrete space.   For pseudo-discrete

spaces (P-spaces; see [7, p. 62]), the situation is more complex.  As an ex-

ample due to M. Henrikson shows, a P-space need not be a Baire space. And,

even if the P-space X is strongly a-favorable [3, p. 116], 1.1 need not hold

for X  (see [13]).  However, if  2      = X,, then 1.1 holds for every cocompact

[l, p. 292] P-space.  This follows from the next statement, the proof of which

is essentially the same as the proof of 1.13 of U5L

kg

3.1 Proposition.  If 2      = Xy then 1.1 holds for every quasi-regular, co-

compact space X for which every nonempty  Gs has nonempty interior.

Remark.   A metrizable space is cocompact if and only if it is strongly

a-favorable (see Theorem 1 of [l] and Theorem 8.7 of [3]).

If  ((X^, J i))i ej is a family of topological spaces and  m  is an infinite

cardinal number, then we denote by J(ïïl) the m-box product topology on  X =

Ü|X¿: i £ l\ induced by  (J ,-)¿e/»  The following two statements guarantee a

supply of cocompact P-spaces.

3.2 Proposition.  Suppose m   is an infinite cardinal number such that, if

m    < m for all n  in N, then 2|m   : n £ N\ < m.   If, for each 1  in I, (X., 3" )
n ' n '    ' 11

is a cocompact P-space, then  (X, J (m))  is a cocompact P-space.
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3.3  Proposition.  // (X, J ) is a locally compact, Hausdorff space and

J     denotes the coarsest P-space topology for X containing J   [5. p. 55J. then

(X, J   ) is cocompact.

Proof of 3.2.  It is easily verified that  (X, J (m)) is a P-space. And if

for each  i in  /,  U.  is a compact cotopology for J ., then tl(X0) is a compact

cotopology for 3~(m) [1, p. 242].

Proposition 3.3 is easily proven by using 3.11(b) of [7].  In fact, if J   is

compact, then  J   is a compact cotopology for J    .

Proposition 3.2 provides an example of a cocompact P-space for which,

if  2      =2     ,1.1 does not hold.  For let  / be a set of cardinality   X.   and,

for each  / in  /, let J . denote the discrete topology on the two point set  X..

Then Proposition 1.2 of [14] implies that 1.1 does not hold for  (X, 3"(Xj)),

provided  2     = 2     .

Remark.  It is obvious that if 1.1 does not hold for a topological space

X, then it does not hold for any dense subspace of  X. However, it can hap-

pen that (a) every dense subset of  X of cardinality  2       is a Baire space for

which 1.1 does not hold, and (b) 1.1 holds for  X.   For let  X = ßN ~ N, where

ßN denotes the Stone-Cech compactification of the discrete space  N.   By

Proposition 1.2 of [14], (a) holds.   But, if  2      = Xp Proposition 3.1 implies

that (b) holds.
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