A CARLESON MEASURE THEOREM FOR BERGMAN SPACES

WILLIAM W. HASTINGS

ABSTRACT. Let μ be a finite, positive measure on U^n , the unit polydisc in \mathbb{C}^n , and let σ_n be 2*n*-dimensional Lebesgue volume measure on U^n . For $1 \le p \le q < \infty$ a necessary and sufficient condition on μ is given in order that $\{\int_{U^n} f^q(z) d\mu(z)\}^{1/q} \le C\{\int_{U^n} f^p(z) d\sigma_n(z)\}^{1/p}$ for every positive *n*-subharmonic function f on U^n .

A theorem of Carleson [1], [2] as generalized by Duren [3] characterizes those positive measures μ on |z| < 1 for which the H^p norm dominates the $L^{q}(\mu)$ norm of elements of H^p . The purpose of this note is to prove an analogous result with H^p replaced by A^p , the Bergman space of functions f which are analytic in |z| < 1 and for which $\int_0^1 \int_0^{2\pi} |f(re^{i\theta})|^p r d\theta dr < \infty$. Actually, the result is more general in that it applies to positive *n*-subharmonic functions and positive measures on the unit polydisc in \mathbb{C}^n . I wish to express my gratitude to Professor Allen Shields for suggesting this problem and guiding me to its solution. My thanks also go to the referee for outlining a correction to an error in my proof.

First, some notation and a definition. Let

$$U^{n} = \{z = (z_{1}, \ldots, z_{n}) \in \mathbb{C}^{n} : |z_{j}| < 1, 1 \leq j \leq n\},\$$

and let σ_n be 2*n*-dimensional Lebesgue volume measure restricted to U^n , normalized so that U^n has measure one. Suppose that f is upper semicontinuous on U^n . Then we say that f is *n*-subharmonic provided that f is subharmonic in each variable separately (cf. [5, p. 39]).

Theorem. Let μ be a finite, positive measure on U^n , and suppose $1 \le p \le q < \infty$. Then there exists a constant C > 0 such that

(1)
$$\left\{\int_{U^n} f^{q}(z) d\mu(z)\right\}^{1/q} \leq C \left\{\int_{U^n} f^{p}(z) d\sigma_n(z)\right\}^{1/q}$$

for every positive n-subharmonic function f on U^n if and only if there exists a constant C' > 0 such that

(2)
$$\mu(S) \leq C' \left(\prod_{j=1}^{n} \delta_{j}\right)^{2q/t}$$

for every set S of the form

(3)
$$S = \{z = (r_1 e^{i\theta_1}, \dots, r_n e^{i\theta_n}) : 1 - \delta_j \le r_j \le 1, \ \theta_j^0 \le \theta_j \le \theta_j^0 + \delta_j, \ 1 \le j \le n\}.$$

Received by the editors April 23, 1974 and, in revised form, July 1, 1974.

AMS (MOS) subject classifications (1970). Primary 30A78, 32A30, 46E15. Key words and phrases. Bergman spaces, n-subharmonic function, finite positive measure.

Proof. Suppose that $0 \le p \le q \le \infty$, and suppose that (1) holds for every positive *n*-subharmonic function f on U^n . Let S be a set of the form (3). Let

$$\alpha_j = (1 - \delta_j) \exp\{i(\theta_j^0 + \delta_j/2)\}, \quad 1 \le j \le n,$$

and set

$$f(z) = \prod_{j=1}^{n} |1 - \overline{\alpha}_{j} z_{j}|^{-4/p}.$$

A geometric argument [4, p. 157] shows that in S,

$$f^{p}(z) \geq c_1 \prod_{j=1}^n \delta_j^{-4}.$$

Therefore,

$$c_{1}^{q/p} \prod_{j=1}^{n} \delta_{j}^{-4q/p} \mu(S) \leq \int f^{q} d\mu \leq C^{q} \left\{ \int f^{p} d\sigma_{n} \right\}^{q/p} \leq C^{q} \prod_{j=1}^{n} \delta_{j}^{-2q/p}$$

and (2) holds with $C' = c_1^{-q/p}C^q$.

Conversely, suppose that (2) holds for every set S of the form (3). For $m = (m_1, \ldots, m_n) \in \mathbb{Z}^n$ and $k = (k_1, \ldots, k_n) \in \mathbb{Z}^n$ with $m_j \ge 0$ and $1 \le k_j \le 2^{m_j+4}, 1 \le j \le n$, set

$$T_{mk} = \{z = (r_1 e^{i\theta_1}, \dots, r_n e^{i\theta_n}) : 1 - 2^{-m_j} \le r_j \le 1 - 2^{-m_j-1}, \\ 2k_j \pi/2^{m_j+4} \le \theta_j \le 2(k_j+1)\pi/2^{m_j+4}, \quad 1 \le j \le n\},$$

and set $z^{mk} = (z_1^{mk}, \ldots, z_n^{mk})$, where

$$z_{j}^{mk} = (1 - 2^{-m_{j}}) \exp\{2(k_{j} + \frac{1}{2})\pi i/2^{m_{j}+4}\}, \quad 1 \le j \le n.$$

Note that

$$\mu(T_{mk}) \le C \left(\prod_{j=1}^{n} 2^{-m_j} \right)^{2q/p} \quad \text{and} \quad \max_{z \in T_{mk}} |z_j - z_j^{mk}| < \frac{11}{16} 2^{-m_j}, \quad 1 \le j \le n.$$

Now suppose that f is positive and *n*-subharmonic in U^n . For $(6/8)2^{-m_j} \le \rho_j \le (7/8)2^{-m_j}$ and $z \in T_{mk}$, repeated application of Harnack's inequality yields

$$f^{p}(z) \leq (2\pi)^{-n} \prod_{j=1}^{n} \left(\frac{\rho_{j} + |z_{j} - z_{j}^{mk}|}{\rho_{j} - |z_{j} - z_{j}^{mk}|} \right)$$

$$\cdot \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} f^{p}(z_{1}^{mk} + \rho_{1}e^{i\theta_{1}}, \cdots, z_{n}^{mk} + \rho_{n}e^{i\theta_{n}}) d\theta_{1} \cdots d\theta_{n}$$

$$\leq c_{1}(2\pi)^{-n} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} f^{p}(z_{1}^{mk} + \rho_{1}e^{i\theta_{1}}, \cdots, z_{n}^{mk} + \rho_{n}e^{i\theta_{n}}) d\theta_{1} \cdots d\theta_{n}.$$

Hence, for $z \in T_{mk}$,

$$f^{p}(z) = c_{2} \left(\prod_{j=1}^{n} 4^{m_{j}} \right) \int_{(6/8)2}^{(7/8)2^{-m_{1}}} \cdots \int_{(6/8)2^{-m_{n}}}^{(7/8)2^{-m_{n}}} f^{p}(z) \rho_{1} \cdots \rho_{n} d\rho_{1} \cdots d\rho_{n}$$
$$\leq c_{1} c_{2} \left(\prod_{j=1}^{n} 4^{m_{j}} \right) \int_{U_{mk}} f^{p} d\sigma_{n}$$

where

$$U_{mk} = \{z = (z_1, \ldots, z_n) \in \mathbb{C}^n : |z_j - z_j^{mk}| \le (7/8)2^{-mj}, \ 1 \le j \le n\}.$$

Since z was arbitrary in T_{mk} , we have

$$\int_{U^{n}} f^{q} d\mu = \sum_{\substack{m = (m_{1}, \dots, m_{n}) \\ m_{j} \geq 0 \\ m_{j} \geq 0 \\ m_{j} \geq 0 \\ m_{j} \leq 2^{m_{j} + 4}}} \int_{T_{mk}} f^{q} d\mu$$

$$\leq \sum_{m} \sum_{k} \mu(T_{mk}) \left\{ c_{1} c_{2} \left(\prod_{i=1}^{n} 4^{m_{i}} \right) \int_{U_{mk}} f^{p} d\sigma_{n} \right\}^{q/p}$$

$$\leq c_{3} \sum_{m} \sum_{k} \left\{ \int_{U_{mk}} f^{p} d\sigma_{n} \right\}^{q/p}.$$

Fix $m^0 = (m_1^0, \ldots, m_n^0)$ and $k^0 = (k_1^0, \ldots, k_n^0)$ with $m_j^0 \ge 0$ and $1 \le k_j^0 \le 2^{m_j^0 + 4}$, $1 \le j \le n$. We claim that $T_{m_k^0 k_j^0}$ intersects U_{mk} for at most $N = (5.57)^n$ choices of the pair (m, k). Assume first that $m_j^0 \ge 1$. If

$$z = (r_1 e^{i\theta_1}, \ldots, r_n e^{i\theta_n}) \in T_{m^0 k^0}$$

then $1 - 2^{-m_j^0} \le r_j \le 1 - 2^{-m_j^0 - 1}$, while if $z \in U_{mk}$, then $1 - 2^{-m_j^0 + 1} \le r_j \le 1 - 2^{-m_j^0 - 3}$. Hence, if $z \in T_{m^0 k^0} \cap U_{mk}$, then combination of the two inequalities shows that $m_j^0 - 3 \le m_j \le m_j^0 + 2$. Then m_j can be one of at most five different values. Similarly, if $z \in T_{m^0 k^0}$, then we may assume that

$$2k_j^0 \pi/2^{m_j^0+4} \le \theta_j < 2(k_j^0+1)\pi/2^{m_j^0+4}.$$

A little geometry shows that if $z \in U_{mk}$, then

$$\frac{2(k_j + \frac{1}{2})\pi}{2^{m_j + 4}} - \frac{7\pi}{8} 2^{-m_j} \le \theta_j + 2l\pi \le \frac{2(k_j + \frac{1}{2})\pi}{2^{m_j + 4}} + \frac{7\pi}{8} 2^{-m_j}$$

where l is either 0, 1 or -1. Combination of these two inequalities yields

$$2^{m_j - m_j^0} k_j^0 + 2^{m_j^{+4}} l - 7 \le k_j^{+1/2} \le 2^{m_j - m_j^0} k_j^0 + 2^{m_j^{-m_j^0}} + 2^{m_j^{+4}} l + 7.$$

Hence, if $z \in T_{m_{k_{j}}^{0} \cap U_{m_{k}}^{0}}$, then k_{j} can be one of at most $3(15 + 2^{m_{j}^{-m_{j}^{0}}}) \leq 57$ different values. (The factor of 3 reflects the three possible values of l.) This establishes the claim for $m_{j}^{0} \geq 1$, but if $m_{j}^{0} = 0$ for any j in the above counting procedure, then we would have even fewer intersections. Therefore,

$$\begin{split} \sum_{m=(m_{1},\dots,m_{n})} & \sum_{k=(k_{1},\dots,k_{n})} \left\{ \int_{U_{mk}} f^{p} d\sigma_{n} \right\}^{q/p} \leq \left\{ \sum_{m,k} \int_{U_{mk}} f^{p} d\sigma_{n} \right\}^{q/p} \\ &= \left\{ \sum_{m,k} \sum_{m^{0},k^{0}} \int_{T_{m^{0}k^{0}} \cap U_{mk}} f^{p} d\sigma_{n} \right\}^{q/p} \\ &= \left\{ \sum_{m^{0},k^{0}} \sum_{m,k} \int_{T_{m^{0}k^{0}} \cap U_{mk}} f^{p} d\sigma_{n} \right\}^{q/p} \\ &\leq \left\{ N \sum_{m^{0},k^{0}} \int_{T_{m^{0}k^{0}}} f^{p} d\sigma_{n} \right\}^{q/p} = N^{q/p} \left\{ \int_{U^{n}} f^{p} d\sigma_{n} \right\}^{q/p}, \end{split}$$

and the proof is complete.

Remark. The Theorem also holds for $0 \le p \le q \le \infty$ if we require that $f = \lfloor g \rfloor$, where g is holomorphic in U^n . In this case f^p is *n*-subharmonic, and so the proof is the same.

As in [3] two inequalities follow immediately.

Corollary. For a positive subharmonic function f on |z| < 1 and for $1 \le p \le q < \infty$,

$$\left\{\int_0^1 f^{q}(r)(1-r)^{2(q/p)-1} dr\right\}^{1/q} \le C\left\{\int_{|z|<1} f^{p}(z) d\sigma_1(z)\right\}^{1/t}$$

and

$$\left\{\int_0^1 (1-r)^{2(q/p)-2} \int_0^{2\pi} f^{q}(re^{i\theta}) \, d\theta \, dr\right\}^{1/q} \leq C' \left\{\int_{|z|<1} f^{p}(z) \, d\sigma_1(z)\right\}^{1/p}$$

where the constants C and C' may be chosen independently of f.

For another application, suppose $\{z_j\}_{j=1}^{\infty}$ is a sequence of distinct points in |z| < 1. Let μ be the point measure defined by $\mu\{z_j\} = (1 - |z_j|^2)^2$, $j \ge 1$, and $\mu(U \setminus \{z_j\}_{j=1}^{\infty}) = 0$. For $f \in A^p$ (p > 0) let $T_p f$ be the sequence $\{f(z_j)(1 - |z_j|^2)^{2/p}\}_{j=1}^{\infty}$.

Corollary. For $0 , <math>T_p(A^p) \subset l^p$ if and only if $\mu(S) \leq c\delta_1^2$ for every set S of the form (3) with n = 1.

REFERENCES

1. L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921-930. MR 22 #8129.

2. _____, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547-559. MR 25 #5186.

3. P. L. Duren, Extension of a theorem of Carleson, Bull. Amer. Math. Soc. 75 (1969), 143-146. MR 39 #2989.

4. ——, Theory of H^p spaces, Pure and Appl. Math., vol. 38, Academic Press, New York, 1970. MR42 #3552.

5. Walter Rudin, Function theory in polydiscs, Benjamin, New York, 1969. MR 41 #501.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHI-GAN 48104

Current address: Department of Mathematics, Fordham University, Bronx, New York 10458