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A CARLESON MEASURE THEOREM FOR BERGMAN SPACES

WILLIAM W. HASTINGS

ABSTRACT.  Let M be a finite, positive measure on U   ,  the unit poly-

disc in  C",   and let  °~    be 2n-dimensional Lebesgue volume measure on  U  .

For   1 < p < <? < °°   a necessary and sufficient condition on  M is given in order

that {f      fg(z)dfi(z)\1/q <C{f      fp(z)do- (z)\l/p  for every positive n-sub-
Un n       Un n

harmonic   function / on  U   .

A theorem of Carleson [ll, [2] as generalized by Duren [3] characterizes

those positive measures fi on  \z\ < 1   for which the  Hp norm dominates the

Lqip) norm of elements of Hp.  The purpose of this note is to prove an analo-

gous result with  £    replaced by  Ap,  the Bergman space of functions  / which

are analytic in   \z\ < 1   and for which /J f^lfire*   )\prd6dr<°o.   Actually,

the result is more general in that it applies to positive «-subharmonic func-

tions and positive measures on the unit polydisc in C".  I wish to express my

gratitude to Professor Allen Shields for suggesting this problem and guiding

me to its solution.  My thanks also go to the referee for outlining a correction

to an error in my proof.

First, some notation and a definition.  Let

[/»= \z = izv ... , z) eCn : \z.\ < 1, 1 </<«},

and let a    be 2«-dimensional Lebesgue volume measure restricted to  U",

normalized so that   Un has measure one.  Suppose that /   is upper semicontin-

uous   on   Un.  Then we say that /   is /z-subharmonic provided that /   is sub-

harmonic in each variable separately (cf. [5, p. 39]).

Theorem.   Let p. be a finite, positive measure on  11",  and suppose  I <

p < q < tx>.   Then there exists a constant  C > 0  such that

(1) j|     fqiz) duiz)\     " < cfj     fpiz) doniz)\

for every positive n-subharmonic function f   on  U"  if and only if there exists

a constant C   > 0  such that

(2) pis) < c't n sA

for every set S of the form

(3)    S.[zm{rieiBl.fne\. 1 -8. < r. < 1, 0°<6\<6>P + 5., 1 <;<«}.
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Proof.  Suppose that  0 < p < q < <*>,  and suppose that (1) holds for every

positive n-subharmonic function /   on   U".  Let  S be a set of the form (3). Let

a. = (1 _ 8 .) exp 1 i(0° + 8. /2)},        1 < ; < n,

and set

/(z) = fl|l-a z|-4/P.
7 = 1

A geometric argument [4, p. 157] shows that in S,

fp{z)>Cl fi sr\
7 = 1

Therefore,

c?/p n 574,/w<//*^<c«{//',<k}* P<c* n s-2*7*'
;' = 1 ' 7 = 1

and (2) holds with C = c~q,pCq.

Conversely, suppose that (2) holds for every set S of the form (3).  For

m = {m„ .. . , m ) £ Z"  and  k = \k,, . .. , k ) £ Z" with  m . > 0  and   1 < k.
.In In 7 — —    7

< 2m7+4. 1 < ; < «,  set

_ , ,       »f?i if?. -« • -m .-1
r    ={z = (r,e   \...,re   ") : 1 - 2     > < r. < 1 - 2     '    ,

mfe In — 7 '

,   m -+4 m .+4
2k.n/2   »     < f3.< 2(A.+ l)»r/2   ;    ,   1 </'<«},

and set zmfe = (z™*, . . • , *£*),   where

z™k = (1 - 2~m') exp,2U. + ^)^z/2m'+4!,        1 < ; < n.

Note that

, x /»        -m.\2«^ ,,       11     -m.
p(T.)<C[t]2     n and       max   \z.-zmk\<— 2      >,        1< / < «.

V / mk

Now suppose that /  is positive and w-subharmonic in  U".  For (6/8)2      7

< p. < (7/8)2      ; and z e^mk, repeated application of Harnack's inequality

yields

/*»(z)<(2,)-n     ,    ')

■So77'"   R'W + Pl"1'   -•    'Zmnk+pJ9n)dei---ddn

<c.(27r)-"  [27r ...   (W fKz?k + p,e    \...,zmk + pe'0")d6,---dd.
—    I JO JO     ' 1 1 '     n rn 1 n

Hence, for z £ Tmk,
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/•"-/ft <"<)rnC - /',/b,!_?'^,-o„*,-+»
V-1 /    (6/8)2       l (6/8)2       "

<^2( £/')/„       /**.
\;=i / J    mk

where

1/   ,= lz = (z., ..., z ) £C": |z.-zmfe| <(7/8)2~m',   1 < / < «}.
mfc 1 rz 7 7

Since  z was arbitrary in   Tmk, we have

/„./•*-      Z Z      Jr   /«*
m={m . ,...,m   )   * = (&.,..,,&   ) mfe

i ?2 l n

my-° i<fe.<2  '
J

< zz^jWn*"')/,, /^T/?
m      fe ( \i=l /      Umk )

Fix  rzz° = (m°   ... , tb°) and k° = (A°.*°) with m° > 0 and  1< £°
m°+4 . ." * 1 ~ ~    1

< 2   7    , 1 < / < «.  We claim that T   0  0 intersects  f  ,   for at most N =

(5.57)" choices of the pair (rzz, k).  Assume first that m. > 1. If

id, id .
z = irxe    \...,rne    ") £ T

m   k

0 0,
-m • —m . -1 -7M . + 1

then  1-2      »<r.<l-2      '     , while if z £ U  .,  then 1 - 2      '     <r.<
_m ._3        —   J mk' j —

1 _ 2      '     •  Hence, if z £ Too n (7       then combination of the two ine-
m   k ■ mk.1

qualities shows that  m. - 3 < m.< m. +2.  Then  m. can be one of at most
y —    ]        ] i

five different values.  Similarly, if z £ T then we may assume that
m   k

2k°.n/2m^*<d.<2ik°+l)n/2m°S\

A little geometry shows that if z e U  ,, then

2ik  +y2)n      7n    _m. 2ik+V2)n      ?77    _m.
-1-Ll2     ><d.+ 2lTT< -1-+—2      '

m.+4 8 J ~      2^+4 8

where  /  is either 0, 1 or—1. Combination of these two inequalities yields

m .—m.   «        m.+4 .,        m ,—m.   «        m.—m. m. + A

2  >     >k° + 2 '    l-7<k. + V2<2  '     >k° + 2  '     '+2  '     1+7.
i -   l        - i
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0
m .— m .

Hence, if zeTnc.nU        then k.  can be one of at most 3(15 + 2   '      ])
m   k mfz J

< 57 different values. (The factor of 3 reflects the three possible values of

/.) This establishes the claim for  m. > 1,  but if  m. = 0 for any  /   in the

above counting procedure, then we would have even fewer intersections.

Therefore,

{    r )q/p I r )q,p

£ Z       /„   /**       <   Z/y   /**.
m =(m ,,.. .,rrc   )   k = (k.,....k   )( mk 1 (m.k mk

in in '

m.>0 m,+4
) l<fe.<2    !

J

= js z: Jr   nu fp*>n\q/P
I mtk       0   ,0       l     0,0nUmk
v m   ,k m   k '

= \ z z /        fpda r
K m   ,k      m,k „0j.u        m« )

m   re '

( )«/p \ )q/p

< \N   Z     L lP<bn\       =Nq'p{(    fpda\      ,
I 0 U0JT   0,0 "\ lJU"
1      m   ,k m   k

and the proof is complete.

Remark.  The Theorem also holds for 0 < p < q < <x>  if we require that

/= |g|,  where  g is holomorphic in   U".  In this case fp is rz-subharmonic, and

so the proof is the same.

As in [3] two inequalities follow immediately.

Corollary.   For a positive subharmonic function f   on \z\ < 1  and for

1 < p < q < 00,

H'W -*""»'-,*}"*£<:{/w.1/'W*iW},/*
and

i/^l-r)2^)-' /o2ff/'(«,'5)**}1/€< C'{fW<1/^*lW}1/P

where the constants  C and C    may be chosen independently of f.

For another application, suppose Jz.J.   j is a sequence of distinct points

in  |z| < 1.  Let p   be the point measure defined by p{z.] = (1 — |z. |   )  , j > 1,

and piu\\z.\°°=1) = 0.   For   /   £AP (p  >  0)   let   T f  be  the  sequence

|/(z.)(l-|z.|2)2/pi-=i.

Corollary.   For 0 < p <°°, T iAp) C lp   if and only if piS) < c82 for every

set S of the form (3) with n = 1.
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