CYCLOTOMIC SPLITTING FIELDS FOR GROUP CHARACTERS

MARK BENARD1

ABSTRACT. This paper is concerned with cyclotomic splitting fields for a real-valued irreducible character of a finite group. The fields considered are of the form $Q(\epsilon_m)$, where m is either an odd prime or a power of 2.

Let χ be an irreducible character of G and let ϵ_m be a primitive mth root of unity. A famous theorem of Richard Brauer states that if m is the exponent of G, then $Q(\epsilon_m)$ is a splitting field for G. In a paper where he gives his second proof of this theorem, Brauer states the following proposition without proof [2, Theorem 3]: If χ is a real-valued character of G, then there exists an element of G whose order m is either an odd prime or a power of 2 such that $Q(\epsilon_m)$ splits χ . The examples given below show that this proposition is actually false. One weaker theorem is proved by B. Fein [3]. The Theorem given below is another attempt to substitute for Brauer's proposition.

Let k be a field of characteristic 0. The pair (G, χ) is said to be k-special if there exists a normal, cyclic, self-centralizing subgroup A of G and a faithful linear character λ of A such that $\chi = \lambda^G$ and G/A acts on λ as $Gal(k(\lambda)/k(\chi))$. Many questions on the Schur index reduce to considering such k-special pairs. Basic results on the Schur index can be found in Yamada [4].

Theorem. Suppose that χ is a real-valued character of G and G contains no elements of order 4n with n odd and n>1. Then there exists an integer m dividing the exponent of G such that m is either an odd prime or 4, and such that $Q(\epsilon_m)$ splits χ .

Proof. To prove the Theorem, it is necessary to show that the Schur index $m_F(\chi)$ equals 1 for some field $F = Q(\epsilon_m)$ as specified above. Since χ is real-valued, then $m_Q(\chi) \leq 2$ by the Brauer-Speiser theorem. By the the Brauer-Witt theorem, it suffices to consider $Q(\chi)$ -special pairs (G,χ) where G/A is a 2-group.

If G is a 2-group, then $m_Q(\chi) = 1$ if $\exp(G) = 2$. If $4 | \exp(G)$, then m

Received by the editors October 25, 1974.

AMS (MOS) subject classifications (1970). Primary 20C15.

Key words and phrases. Schur index, Brauer-Speiser theorem, Brauer-Witt theorem.

¹This research was supported by NSF Grant GP-29437.

Copyright © 1975, American Mathematical Society

= 4 satisfies the conclusion of the Theorem. For the remainder of the proof, assume that there exists an odd prime q which divides |G|. It will be shown that $F = Q(\epsilon_q)$ splits χ .

Assume $m_Q(\chi)=2$. Let p be a prime such that $m_{Q_p}(\chi)=2$. Let p be a subgroup of p such that p and p an

Example (1). Define $G = \langle a, b, c, z, x, y, w \rangle$ with the following relations:

$$a^5 - b^{11} = c^{43} = z^2 = x^4 = w^{42} = 1, y^{10} = z,$$

 $[x, w] - z, x^{-1}ax = a^2, y^{-1}by = b^2, w^{-1}cw = c^3.$

Then $\exp(G) = 2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 43$. Let $A = \langle a, b, c, z \rangle$ and let λ be a faithful linear character of A. Then $A \triangleleft G$ and $\chi = \lambda^G$ is a rational-valued irreducible character of G. The p-local Schur indices of χ can be calculated by using either the formula of Berman $[1, \S 4]$ or Yamada $[4, \S 4]$. The index $m_{Q_p}(\chi) = 2$ exactly when p = 5, 11, 43, and ∞ . Furthermore, if $m \in \{4, 3, 5, 7, 11, 43\}$, there exists $p \in \{5, 11, 43, \infty\}$ such that $|Q_p(\epsilon_m):Q_p|$ is odd. Thus $Q(\epsilon_m)$ fails to split χ for each such m. Hence Brauer's proposition is false.

Example (2). Another example shows that if $\exp(G)$ is replaced by |G|, then the proposition is still false. Define $G = \langle a, b, c, z, x, y, w \rangle$ with the following relations:

$$a^{17} = b^{31} = c^{103} = z^2 = x^2 = y^2 = 1,$$
 $w^2 = z,$ $[x, y] = z,$ $x^{-1}ax = a^{-1},$ $y^{-1}by = b^{-1},$ $w^{-1}cw = c^{-1}.$

Then $|G|=2^4\cdot 17\cdot 31\cdot 103$. Set $A=\langle a,b,c,z\rangle$, λ a faithful character of A, and $\chi=\lambda^G$. Then χ is real-valued and has local Schur index 2 at 17, 31, and 103. Furthermore, if $m\in\{16,17,31,103\}$, there exists $p\in\{17,31,103\}$ such that $|Q_p(\epsilon_m):Q_p|$ is odd. Therefore $Q(\epsilon_m)$ fails to split χ for each m.

The following result shows that this situation cannot happen if χ is rational-valued.

Proposition. Let χ be an irreducible character of G such that $Q(\chi)$ is an extension of Q of odd degree. If $|G| = 2^c n$, n odd, then $Q(\epsilon_2 c)$ splits χ .

Proof. By the Brauer-Speiser theorem, $m_Q(\chi) \leq 2$. By the Brauer-Witt theorem, it suffices to consider $Q(\chi)$ -special pairs (G,χ) where G/A is a 2-group. Since $Q(\chi)/Q$ has odd degree, G/A is isomorphic to a Sylow 2-subgroup of $\operatorname{Gal}(Q(\lambda)/Q)$.

Suppose $m_Q(\chi)=2$. Then χ cannot be linear, so $G\neq A$. Hence $2\mid |G:A|$. Let T be a Sylow 2-subgroup of G. If $A\cap T=\langle 1\rangle$, then $\chi(1)=|G:A|=|T|$ and $(\chi,(1_T)^G)=1$. In that case, $m_Q(\chi)=1$, which is a contradiction. Hence $2\mid |A|$ so $4\mid |G|$ and $c\geq 2$. Thus $2\mid |Q_p(\epsilon_2c):Q_p|$ for $p=2,\infty$. In particular, $Q_2(\epsilon_2c)$ and $Q_\infty(\epsilon_2c)$ each split χ .

Let p be an odd prime with $p-1=2^ab$, b odd. Suppose $m_{Q_p}(\chi)=2$. Then $p\mid |A|$. Since λ is faithful and G/A is isomorphic to a Sylow 2-subgroup of $\operatorname{Gal}(Q(\lambda)/Q),\ 2^a\mid |G:A|$. Therefore, $c\geq a+1$. Hence, $2\mid |Q_p(\epsilon_2c):Q_p\mid$ so $Q_p(\epsilon_2c)$ splits χ .

Therefore $Q(\epsilon_2 c)$ splits χ .

REFERENCES

- 1. S. D. Berman, Representations of finite groups over an arbitrary field and over rings of integers, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 69-132; English transl., Amer. Math. Soc. Transl. (2) 64 (1967), 147-215. MR 33 #5747.
- 2. R. Brauer, Applications of induced characters, Amer. J. Math. 69 (1947), 709-716. MR 9, 268.
- 3. B. Fein, Realizability of representations in cyclotomic fields, Proc. Amer. Math. Soc. 38 (1973), 40-42. MR 47 #3503.
- 4. T. Yamada, The Schur subgroup of the Brauer group, Lecture Notes in Math., vol. 397, Springer-Verlag, Berlin and New York, 1974.

DEPARTMENT OF MATHEMATICS, TULANE UNIVERSITY, NEW ORLEANS, LOUISIANA 70118