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CYCLOTOMIC SPLITTING FIELDS FOR GROUP

CHARACTERS

MARK BENARD1

ABSTRACT. This paper is concerned with cyclotomic splitting fields

for a real-valued irreducible character of a finite group. The fields con-

sidered are of the form Q(e ), where m is either an odd prime or a power

of 2.

Let x De an irreducible character of G and let e    be a primitive 7?zth root of

unity.   A famous theorem of Richard Brauer states that if m is the exponent

of G, then Qie   )  is a splitting field for G.   Tn a paper where he gives his

second proof of this  theorem, Brauer states the following proposition with-

out proof [2, Theorem 3]:   If x 1S a real-valued character of G, then there

exists an element of G whose order m  is either an odd prime or a power of

2 such that Q(e   )  splits  y.   The examples given below show that this

proposition is actually false.   One weaker theorem is proved by B. Fein [3].

The Theorem given below is another attempt to substitute for Brauer's

proposition.

Let He a field of characteristic 0.   The pair (G, x) IS said to be

k-special if there exists a normal, cyclic, self-centralizing subgroup A  of

G and a faithful linear character A  of A   such that   y = X '  and G/A   acts

on X as GalikiX)/kix)).   Many questions on the Schur index reduce to con-

sidering such ^-special pairs.   Basic results on the Schur index can be

found in Yamada [4].

Theorem.   Suppose that x zs a real-valued character of G and G

contains no elements of order 4n  with n  odd and n > 1.    Then there exists

an integer m  dividing the exponent of G such that m  is either an odd prime

or 4, and such that Qie   ) splits y.

Proof.   To prove the Theorem, it is necessary to show that the Schur

index mAx) equals 1 for some field  F = Qie   ) as specified above.   Since

X is real-valued, then mAx) £ 2  by the Brauer-Speiser theorem.   By the

the Brauer-Witt theorem, it suffices to consider   Q(x)-special pairs  (G, y)

where G/A  is a 2-group.

If G is a 2-group, then mAx) = 1  if exp(G) = 2.   If 4|exp(G), then m
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= 4  satisfies the conclusion of the Theorem.    For the remainder of the proof,

assume that there exists an odd prime q which divides   jGj.   It will be

shown that  F = Q(( )  splits  x-

Assume  mQ(y) = 2.   Let p  be a prime such that m„   (y) = 2.   Let

II   be   a   subgroup   of   G   such   that   A CH   and   H/A   acts   on   A   as

Gal (Q AX)/Q Ax))- Set c4 = A   . Then m    (</>) = mQ (y) = 2.  Suppose II contains

no element of order 4.   Then a Sylow 2-subgroup of G   is elementary abelian

and   A   has  a  complement   7*   in   //.    Thus   c6(l)  =   \T\    and   (e6,(lr)   )  =

1    so m n   (</>) = 1, which is a contradiction.   Therefore  H  contains an
UP

element of order 4.   Let x  be an element of order q  in A.   Since  G  contains

no element of order 4q, then   x i Z(H). Since A.  is faithful and  H/A   acts

on X as Gal(Qp(X)/Qp(y)),then 2\\Q   (y, iq): Qp |.   Thus, if k = Qp(eq),

then  m,(y) = 1.   Therefore m   (x) = 1   for F = Q(( ).

Example (1).   Define  G = (a, b, c, z, x, y, w) with the following relations:

«5 = &n=c43=z2=x4=u/42 = l,        y10 = z>

[x, iw] = z,       x~lax = a2,       y~   by = b   ,       w~   cw = ci.

Then exp (G) = 22 • 3 • 5 • 7 ■ 11 ■ 43.   Let A = («, 6, c, z)  and let A be

a faithful linear character of A.   Then A  <  G  and  X = A     is a rational-

valued irreducible character of G.   The p-local Schur indices of y  can be

calculated by using either the formula of Berman [l, §4] or Yamada [4,

Chapter 4],   The index ttz,,    (y) = 2  exactly when p = 5, 11, 43, and  oo.

Furthermore, if w e |4, 3, 5, 7, 11, 43!, there exists  p £ (5, 11, 43, <*>!  such

that   lO   (f   ):0    I   is odd.   Thus  Q((   )  fails to split y  for each such w.

Hence Brauer's proposition is false.

Example (2). Another example shows that if exp(G) is replaced by

\G\, then the proposition is still false. Define G = (a, b, c, z, x, y, w)

with the following relations:

a11 = 631  =c'°3 = z2 = ;c2=y2 = lj w2=Zt

[x, y] = z,       x~   ax = a~   ,       y~   by = b~   ,       w~   cw = c~  .

Then  \G\ = 24 - 17 • 31 - 103.   Set A =   (a, b, c, z),X a faithful character

of A, and X = A   •   Then y is real-valued and has local Schur index 2

at  17, 31, and 103.   Furthermore, if m £ \16, 17, 31, 103], there exists

p e!l7, 31, 103!  such that   10   ((   ):C>    I   is odd.   Therefore Q((   )  fails
c ' ' '~p        777        ~p   ' *-      77!

to split x for each  m.

The following result shows that this situation cannot happen if y is

rational-valued.

Proposition.    Let y  be an irreducible character of G such that Q(y)

is an extension of Q  of odd degree.    If \G\ = 2cn, n  odd, then Q(( c)

splits y.
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Proof.   By the Brauer-Speiser theorem, mAx) < 2.   By the Brauer-Witt

theorem, it suffices to consider Q(y)-special pairs  (G, y)  where  G/A  is

a  2-group.   Since (Xy)/2 has odd degree,  G/A  is isomorphic to a Sylow

2-subgroup of Gal(0(A)/Q).

Suppose mAx) = 2.   Then y cannot be linear, so G 4 A.   Hence

2J |G:A|. Let T be a Sylow 2-subgroup of G.   If A IX T = (1), then y(l) =

|G:A| = |T|   and (y, (1T)C) = 1.   In that case, ?7z„(y) = 1, which is a con-

tradiction.     Hence  2| |A|   so 4 I \G\  and c > 2.   Thus  2   | \0   ie.c): Q    I
|   I     i l'i — i  i-~ p      z ~- p 1

for p = 2, oo.   Tn particular, Q2(<r2c) and Qoo(t2c) each split y.

Let p be an odd prime with p-l   = 2ab, b odd.   Suppose mQ   (y) = 2.
i P

Then p | |A|.   Since A  is faithful and G/A  is isomorphic to a Sylow 2-

subgroup of Gal(Q(A)/0),   2a   \\G : A\.   Therefore, c > a + 1.   Hence, 2

||0p(f2c):gj  so 8p(f2c) splits y.

Therefore Qie2c) splits y.
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