TAUBERIAN CONCLUSIONS

K. A. JUKES AND I. J. MADDOX

For Professor B. Kuttner on his retirement

Abstract

ABSTRAC.T. Littlewood's celebrated Tauberian theorem states that $\mathbf{\Sigma} a_{n}=s$ (Abel) and $n a_{n}=O(1)$ imply $s_{n}=\Sigma_{k=1}^{n} a_{k}$ converges to s, the Tauberian condition $n a_{n}=O(1)$ being best possible. We investigate 'best possibility' of the conclusion $s_{n}-s=o(1)$, replacing the usual Tauberian condition by $\left(q_{n} a_{n}\right) \in E$ where $\left(q_{n}\right)$ is a positive sequence and E a given sequence space.

1. Introduction. The first Tauberian theorem of O type was proved by Hardy [1]. It asserts that $\sum a_{n}=s(C, k)$ and $n a_{n}=O(1)$ imply $s_{n}=\sum_{k=1}^{n} a_{k}$ converges to s. Hardy raised the question as to whether (C, k) summability could be replaced by Abel summability, stating he was inclined to think it could not. However, Littlewood, in his now famous paper [3], showed that $\Sigma a_{n}=s$ (Abel) and $n a_{n}=O(1)$ implied $s_{n} \rightarrow s$, and also, that the big O condition was best possible in that if $0<\phi(n) \rightarrow \infty$, there exists a divergent $\sum a_{n}$ such that $n\left|a_{n}\right|<\phi(n)$ and $\sum a_{n}$ is Abel-summable.

In the present note we consider the 'best possibility' of certain Tauberian conclusions. One of the simplest questions is to ask whether $\sum a_{n}=0$ (Abel) and $n a_{n}=O(1)$ imply that $s_{n}=o(1)$ is best possible. That this is so is a special case of Corollary 1 below.

Let $q=\left(q_{n}\right)$ and $p=\left(p_{n}\right)$ denote sequences of positive real numbers. Writing $a=\left(a_{n}\right)$ and $q a=\left(q_{n} a_{n}\right)$, for a given sequence space E let $S(q, E)=\left\{a: q a \in E\right.$ and $\left.s_{n} \rightarrow 0\right\}$. Denote by $P(q, E)$ the property that for all $p \notin l_{\infty}, \exists a \in S(q, E)$ such that $p_{n} s_{n} \nrightarrow 0$. Our main aim is to establish results of the form: $P(q, E)$ if and only if $1 / q=\left(1 / q_{n}\right) \notin E^{\prime}$, where E^{\prime} is another sequence space which is, in a sense, dual to E.

In the following table we list corresponding spaces E, E^{\prime}. Here $\gamma=$ $\left\{a: \Sigma a_{n}\right.$ converges $\}$ and $B V_{0}=\left\{a: \Sigma\left|\Delta a_{n}\right|<\infty\right.$ and $\left.a_{n} \rightarrow 0\right\}$ where $\Delta a_{n}=a_{n}-a_{n+1}$.
2. Verification of the table. In proving the results in the table we shall use the negation of $P(q, E)$, which we denote by $Q(q, E)$, namely $\exists p \notin l_{\infty}$ such that for all $a \in S(q, E), p_{n} s_{n} \rightarrow 0$.
(i) To prove $?\left(q, l_{r}\right)$ implies $1 / q \notin c_{0}(0<r \leq 1)$, we show equivalently

Received by the editors October 9, 1974.
AMS (MOS) subject classifications (1970). Primary 40E05; Secondary 40G10, 40G99.

Key words and phrases. Tauberian theorems, best possible conclusions, Abel, Ingham methods.

E	E^{\prime}
$l_{r}(0<r \leq 1)$	c_{0}
$l_{r}(1<r<\infty)$	$l_{s}(1 / r+1 / s=1)$
l_{∞}	l_{1}
c_{0}	l_{1}
γ	$B V_{0}$

that $1 / q \in c_{0}$ implies $Q\left(q, l_{r}\right)$. If $1 / q \in c_{0}$, we may choose p_{n} so that $1 / p_{n}=\sup _{k \geq n+1} 1 / q_{k}$. For then, if $a \in S\left(q, l_{r}\right)$, given $\epsilon>0$,

$$
\left|s_{n}\right|^{r}=\left|\sum_{n+1}^{\infty} a_{k}\right|^{r} \leq\left(\frac{1}{p_{n}}\right)^{r} \sum_{n+1}^{\infty}\left|q_{k} a_{k}\right|^{r}<\epsilon\left(\frac{1}{p_{n}}\right)^{r} \quad\left(n>n_{0}, \text { say }\right),
$$

on using $b, c \geq 0$ implies $(b+c)^{r} \leq b^{r}+c^{r}$ (see e.g. Maddox [4, p.22]).
Conversely, suppose $1 / q \notin c_{0}$ and $p \notin l_{\infty}$. Then there exists $c>0$ and $\left(m_{i}\right)$ strictly increasing such that $q_{m_{i}} \equiv q\left(m_{i}\right) \leq c$ (each i). Choose $k_{1}>1$ such that $p\left(k_{1}\right)>2$ and then $m_{i}>k_{1}$ such that $q\left(m_{i}\right) \leq c$. Denote m_{i} by t_{1}. Let

$$
a_{k}= \begin{cases}0 & \left(1 \leq k<t_{1}\right) \\ 1 / p\left(k_{1}\right) & \left(k=t_{1}\right)\end{cases}
$$

For $n>1$ choose $k_{n}>t_{n-1}$ such that $p\left(k_{n}\right)>2 p\left(k_{n-1}\right)$ and then $m_{j}>k_{n}$ such that $q\left(m_{j}\right) \leq c$. Denote m_{j} by t_{n}. Let

$$
a_{k}= \begin{cases}0 & \left(t_{n-1}<k<t_{n}\right) \\ 1 / p\left(k_{n}\right)-1 / p\left(k_{n-1}\right) & \left(k=t_{n}\right) .\end{cases}
$$

Then s_{n} decreases $\left(n>t_{1}\right), s\left(t_{n}\right)=1 / p\left(k_{n}\right)<1 / 2^{n}$ and for $n>1, s\left(k_{n}\right)=$ $1 / p\left(k_{n-1}\right)>2 / p\left(k_{n}\right)$. Further for $n \geq 2$,

$$
\left|q\left(t_{n}\right)\left(1 / p\left(k_{n}\right)-1 / p\left(k_{n-1}\right)\right)\right| \leq c / p\left(k_{n-1}\right) \leq c / 2^{n-1}
$$

whence $q a \in l_{r}$, and so $P\left(q, l_{r}\right)$ holds.
(ii) Suppose $a \in S\left(q, l_{r}\right)(1<r<\infty)$ and $1 / q \in l_{s}(1 / r+1 / s=1)$.

Taking $p_{n}=\left(\sum_{n+1}^{\infty} 1 / q_{k}^{s}\right)^{-1 / s}, Q\left(q, l_{r}\right)$ holds. For by Hölder's inequality, given $\epsilon>0$,

$$
\left|s_{n}\right|=\left|\sum_{n+1}^{\infty} a_{k}\right| \leq\left(\sum_{n+1}^{\infty}\left|q_{k} a_{k}\right|^{r}\right)^{1 / r} / p_{n}<\frac{\epsilon}{p_{n}} \quad\left(n>n_{0}, \text { say }\right) .
$$

Conversely, let $1 / q \notin l_{s}$ and $p \notin l_{w}$. Write

$$
M(m, n)=\sum_{m+1}^{n} \frac{1}{q_{k}^{s}} \quad(n \geq m+1)
$$

Put $a_{1}=0$. Choose $n_{1}>1$ so that $M\left(1, n_{1}\right)>1$ and $p\left(n_{1}\right)>1$. Put

$$
a_{k}=1 / M\left(1, n_{1}\right) p\left(n_{1}\right) q_{k}^{s} \quad\left(2 \leq k \leq n_{1}\right) .
$$

For $i \geq 1$ choose $n_{i+1}>n_{i}$ so that $M\left(n_{i}, n_{i+1}\right)>1$ and $p\left(n_{i+1}\right)>2 p\left(n_{i}\right)$. Put

$$
a_{k}=\frac{\left(1 / p\left(n_{i+1}\right)-1 / p\left(n_{i}\right)\right)}{M\left(n_{i}, n_{i+1}\right) q_{k}^{s}} \quad\left(n_{i}<k \leq n_{i+1}\right)
$$

Then s_{n} decreases $\left(n>n_{1}\right)$ and $s\left(n_{i+1}\right)=1 / p\left(n_{i+1}\right)$. Further

$$
\begin{aligned}
\sum_{n_{i}+1}^{n_{i+1}}\left|q_{k} a_{k}\right|^{r} & \leq \sum_{n_{i}+1}^{n_{i}+1} 1 / \mathcal{M}^{r}\left(n_{i}, n_{i+1}\right) q_{k}^{r(s-1)} p^{r}\left(n_{i}\right) \\
& \left.=1 / M^{r-1}\left(n_{i}, n_{i+1}\right) p^{r(} n_{i}\right)<1 / p^{r}\left(n_{i}\right)<1 / 2^{r(i-1)}
\end{aligned}
$$

whence $q a \in l_{r}$.
(iii) Suppose $a \in S\left(q, l_{\infty}\right)$ and $1 / q \in l_{1}$. Taking $p_{n}=\left(\sum_{n+1}^{\infty} 1 / q_{k}\right)^{-1 / 2}$, we have $p_{n} \rightarrow \infty$ and $\left|p_{n} s_{n}\right| \leq\left(\sup _{n}\left|q_{n} a_{n}\right|\right) p_{n}^{-1 / 2} \rightarrow 0$, and so $Q\left(q, l_{\infty}\right)$ holds.

Conversely, let $1 / q \notin l_{1}$ and $p \notin l_{\infty}$. Let a be as constructed in (ii) above, taking $s=1$. Then again s_{n} decreases $\left(n>n_{1}\right)$ and $s\left(n_{i+1}\right)=$ $1 / p\left(n_{i+1}\right)$. Further for $n_{i}<k \leq n_{i+1},\left|q_{k} a_{k}\right| \leq 1 / p\left(n_{i}\right) \rightarrow 0$. Hence $P\left(q, l_{\infty}\right)$ holds.
(iv) Suppose $1 / q \in l_{1}$. Then $Q\left(q, c_{0}\right)$ trivially holds with $1 / p_{n}=$ $\sum_{n+1}^{\infty} 1 / q_{k}$. Conversely, if $1 / q \notin l_{1}$, then $P\left(q, c_{0}\right)$ holds with a as in (iii).
(v) Suppose $a \in S(q, \gamma)$ and $1 / q \in B V_{0}$. Write $Q_{n}=\Sigma_{n+1}^{\infty}\left|\Delta\left(1 / q_{k}\right)\right|$. For $m \geq n+2$,

$$
\sum_{k=n+1}^{m} a_{k}=\frac{1}{q_{m}} \sum_{k=n+1}^{m} q_{k} a_{k}+\sum_{k=n+1}^{m-1}\left(\sum_{r=n+1}^{k} q_{r} a_{r}\right) \Delta\left(\frac{1}{q_{k}}\right) .
$$

So given $\epsilon>0$, for $n>n_{0}(\epsilon)$,

$$
\left|\sum_{k=n+1}^{m} a_{k}\right|<\epsilon\left(\frac{1}{q_{m}}+\sum_{n+1}^{m-1}\left|\lambda\left(\frac{1}{q_{k}}\right)\right|\right)
$$

whence

$$
\left|s_{n}\right|=\left|\sum_{n+1}^{\infty} a_{k}\right| \leq \epsilon Q_{n}
$$

Note that $Q_{n}=0$ implies $q_{k}=q_{n+1}(k>n)$, contradicting $1 / q \in c_{0}$. So $Q(q, \gamma)$ holds with $p_{n}=1 / Q_{n}$.

Conversely suppose $1 / q \notin B V_{0}$ and $p \notin l_{\infty}$. Either
(a) $\Sigma\left|\Delta\left(1 / q_{k}\right)\right|<\infty$ and $1 / q_{k} \rightarrow 0$, or
(b) $\Sigma\left|\Delta\left(1 / q_{k}\right)\right|=\infty$.

Now $\Sigma\left|\Delta\left(1 / q_{k}\right)\right|<\infty$ implies $1 / q \in c$ and so (a) implies $q \in l_{\infty}$. Further, (a) implies $1 / q \notin l_{1}$. But the sequence a constructed in (iii) satisfies $a \in l_{1}$. Since $q \in l_{\infty}$, then $q a \in l_{1}$. In particular (a) implies $P(q, \gamma)$.

When (b) holds, first suppose $1 / q \notin c_{0}$. Then $P\left(q, l_{r}\right)(0<r \leq 1)$ holds But $q a \in l_{r}$ implies $q a \in \gamma$ and so $P(q, \gamma)$ holds. Now suppose $1 / q \in c_{0}$. Writing $t_{n}=\sum_{k=1}^{n} q_{k} a_{k}$, we have

$$
s_{n}=\sum_{1}^{n} a_{k}=\frac{t_{n}}{q_{n}}+\sum_{k=1}^{n-1} t_{k} \Delta\left(\frac{1}{q_{k}}\right) \quad\left(n \geq 2^{\circ}\right) .
$$

Define $\operatorname{sgn} z=|z| / z(z \neq 0)$, $\operatorname{sgn} 0=0$. Choose $n_{1}>2$ such that $p\left(n_{1}\right)>1$ and $\Sigma_{1}^{n^{-1}}\left|\Delta\left(1 / q_{k}\right)\right|>1$. Define

$$
t_{k}=\left\{\begin{array}{l}
\left(\operatorname{sgn} \Delta\left(1 / q_{k}\right)\right) p\left(n_{1}\right) \Sigma_{1}^{n_{1}-1}\left|\Delta\left(1 / q_{k}\right)\right| \quad\left(1 \leq k<n_{1}\right) \\
0 \quad\left(k=n_{1}\right) .
\end{array}\right.
$$

For $r \geq 1$, choose $n_{r+1}>n_{r}$ such that $\sum_{n_{r}+1}^{n_{r}+1}\left|\Delta\left(1 / q_{k}\right)\right|>1$ and $p\left(n_{r+1}\right)>$ $2 p\left(n_{r}\right)$. Define

$$
t_{k}=\left\{\begin{array}{l}
\left(\operatorname{sgn} \Delta\left(1 / q_{k}\right)\right)\left(1 / p\left(n_{r+1}\right)-1 / p\left(n_{r}\right)\right) / \Sigma_{n_{r}+1}^{n_{r+1}^{-1}}\left|\Delta\left(1 / q_{k}\right)\right| \quad\left(n_{r}<k<n_{r+1}\right), \\
0 \quad\left(k=n_{r+1}\right) .
\end{array}\right.
$$

Then $s\left(n_{r+1}\right)=1 / p\left(n_{r+1}\right), t_{n} \rightarrow 0, t_{n} / q_{n} \rightarrow 0$ and $\sum_{1}^{n-1} t_{k} \Delta\left(1 / q_{k}\right) \rightarrow 0$. Hence $P(q, \gamma)$ holds, completing the table.

For corresponding spaces E, E^{\prime} we immediately have
Corollary 1. Suppose $\Sigma a_{n}=0(A)$ and $q a \in E$ imply $s_{n}=o(1)$, where A is a regular summability method. If $1 / q \notin E^{\prime}$, then the conclusion $s_{n}=$ $o(1)$ is best possible.

If we take A to be the Abel method, $q=(n)$ and $E=l_{\infty}$ in Corollary 1, then we have the answer to our question in the introduction regarding the best possible nature of $s_{n}=o(1)$ in the classical Tauberian case.

A later Tauberian theorem of Ingham's [2, Theorem 2] states that $\Sigma a_{n}=s(I)$ and $n a_{n}=O(1)$ imply $s_{n} \rightarrow s$, where (I) denotes Ingham summability. Taking $a_{n}=\mu(n) / n$, where $\mu(n)$ is the Möbius function, gives the prime number theorem. Although (I) is not regular, for $E=l_{r}(0<r \leq \infty)$ or c_{0}, we do have

Corollary 2. Suppose $\Sigma a_{n}=0(I)$ and $q a \in E$ imply $s_{n}=o(1)$. If $1 / q \notin E^{\prime}$, then the conclusion $s_{n}=o(1)$ is best possible.

The proof follows immediately, using the following lemma, since in (i) - (iv) above each constructed $\left(a_{k}\right) \in l_{1}$.

Lemma 1. $\Sigma\left|a_{k}\right|<\infty$ implies Σa_{k} is summable (I).
Proof.

$$
I_{n} \equiv \frac{1}{n} \sum_{k=1}^{n} k a_{k}\left[\frac{n}{k}\right]=\sum_{k=1}^{n} a_{k}+O\left(\frac{1}{n} \sum_{k=1}^{n} k\left|a_{k}\right|\right)
$$

But $\Sigma\left|a_{k}\right|<\infty$ implies $k\left|a_{k}\right| \rightarrow 0(C, 1)$. Hence $I_{n}=s_{n}+o(1)$.
3. Best possibility when $1 / q \in E^{\prime}$. If $1 / q \in E^{\prime}$, then $a \in S(q, E)$ does not imply that $s_{n}=o(1)$ is best possible. It is interesting to consider what is best possible in this case. As an illustration we have, when $E=c_{0}$, the following

Theorem. Suppose $1 / q \in l_{1}$. Write $R(n)=\Sigma_{n+1}^{\infty} 1 / q_{k}$. Then:
(a) $a \in S\left(q, c_{0}\right)$ implies $s_{n}=o(R(n))$.
(b) For all $p \notin l_{\infty}, \exists a \in S\left(q, c_{0}\right)$ such that $p_{n} s_{n} / R(n) \nrightarrow 0$.

Proof. (a) was noted in (iv) above.
(b) Write $M(m, n)=\sum_{m+1}^{n} 1 / q_{k}(n \geq m+1)$. Choose $n_{1}>1$ so that $p\left(n_{1}\right)>1$. Define $a_{k}=R\left(n_{1}\right) / M\left(0, n_{1}\right) p\left(n_{1}\right) q_{k}\left(1 \leq k \leq n_{1}\right)$. For $r \geq 1$ choose $n_{r+1}>n_{r}$ so that $R\left(n_{r}\right) / M\left(n_{r}, n_{r+1}\right)<2$ and $p\left(n_{r+1}\right)>2 p\left(n_{r}\right)$. Define

$$
a_{k}=\frac{\left(R\left(n_{r+1}\right) / p\left(n_{r+1}\right)-R\left(n_{r}\right) / p\left(n_{r}\right)\right)}{M\left(n_{r}, n_{r+1}\right) q_{k}} . \quad\left(n_{r}<k \leq n_{r+1}\right) .
$$

Then, for $n_{r}<k \leq n_{r+1},\left|q_{k} a_{k}\right| \leq 2 / p\left(n_{r}\right) \rightarrow 0$, while s_{n} decreases $\left(n>n_{1}\right)$ and $s\left(n_{r}\right)=R\left(n_{r}\right) / p\left(n_{r}\right)$, completing the proof.

Finally, we have
Corollary 3. Suppose $1 / q \in l_{1}$.
(a) If $q a \in c_{0}$ and $\Sigma a_{n}=0(I)$, then $s_{n}=o(R(n))$.
(b) For all $p \notin l_{\infty}, \exists a$ such that $q a \in c_{0}, \Sigma a_{n}=0(I)$ but $p_{n_{n}}{ }_{n}^{\prime} R(n) \nrightarrow 0$.

This corollary is an immediate consequence of the above Theorem since one can easily establish

Lemma 2. If $1 / q \in l_{1}$, then $q a \in c_{0}$ implies $s_{n}-I_{n} \rightarrow 0$.

REFERENCES

1. G. H. Hardy, Theorems relating to the summability and convergence of slowly oscillating series, Proc. London Math. Soc (2) 8 (1910), 301-320.
2. A. E. Ingham, Some Tauberian theorems connected with the prime number theorem, J. London Math. Soc. 20 (1945), 171-180. MR 8, 147.
3. J. E. Littlewood, The converse of Abel's theorem on power series, Proc. London Math. Soc. (2) 10 (1910/11), 434-448.
4. I. J. Maddox, Elements of functional analysis, Cambridge, 1970.

DEPARTMENT OF PURE MATHEMATICS, QUEEN'S UNIVERSITY, BELFAST, UNITED KINGDOiN (Current address of I. J. Maddox)

Current address (D_{r}. K. A. Jukes): Department of Mathematics and Statistics, Sheffield Polytechnic, Sheffield, England

