RELATIVE INTEGRAL BASES

LAWRENCE C. WASHINGTON

Abstract

We give necessary and sufficient conditions for certain quadratic extensions of imaginary quadratic fields to have relative integral bases.

Two recent papers ([2], [4]) have given examples of quadratic extensions of imaginary quadratic number fields for which there exists no relative integral basis. In this note, by using a theorem of Artin, we prove the following theorem, which contains these examples as a special case (namely, when $|a|$ is prime).

Theorem. Let $F=\mathbf{Q}(\sqrt{ }-D)$ be an imaginary quadratic field with discriminant $-D$. Let $a \equiv 1(\bmod 4)$ be a square-free integer with $D \nmid a$, and let $E=\mathbf{Q}(\sqrt{ }-D, \sqrt{ } a)$. Then E / F has a relative integral basis $\Leftrightarrow(a, D)=1$.

Proof. Let $g=(a, D)$, so g is odd and square-free. The quadratic subfields of E / \mathbf{Q} have discriminants $a,-D$, and $-a D / g^{2}$. Therefore, up to sign, these are the conductors of the nontrivial Dirichlet characters for E / \mathbf{Q}. By the conductor-discriminant formula, $D_{E / \mathbf{Q}}=$ discriminant of $E / \mathbf{Q}=\left(a^{2} D^{2} / g^{2}\right)$, regarded as an ideal of \mathbf{Z}. Letting $D_{E / F}=$ relative discriminant for E / F, we have

$$
D^{2} N_{F / \mathbf{Q}}\left(D_{E / F}\right)=D_{E / \mathbf{Q}}=\left(a^{2} D^{2} / g^{2}\right)
$$

Therefore, $N_{F / \mathrm{Q}}\left(D_{E / F}\right)=\left(a^{2} / g^{2}\right)$. If σ restricted to F generates $\operatorname{Gal}(F / \mathbf{Q})$, then $\sigma\left(D_{E / F}\right)=D_{\sigma E / \sigma F}=D_{E / F}$. Consequently, $D_{E / F}^{2}=N_{F / Q}\left(D_{E / F}\right)=(a / g)^{2}$, so $D_{E / F}=(a / g)$.

The polynomial $X^{2}-a$ generates E / F, and the discriminant Δ of this polynomial is $4 a$. Therefore, $\Delta^{-1} D_{E / F}=(g) / 4 g^{2}$.

We now need the following theorem of Artin ([1]): Let E / F be a finite extension, $D_{E / F}$ the relative discriminant, and Δ the discriminant of a polynomial defining E / F. Then E / F has a relative integral basis if and only if there is a principal ideal (z) of F such that $(z)^{2}=\Delta^{-1} D_{E / F}$.

Consequently, our problem is reduced to determining when there exists $z \in F$ such that $(z)^{2}=(g)$.

If $g=1$, let $z=1$. We find that E / F has a relative integral basis. In fact

[^0]the basis for $Q(\sqrt{ } a) / Q$ is also a basis for E / F (see Lang [3, p. 68]).
If $g \neq 1$ we have two cases:
(i) $-D \not \equiv 1(\bmod 4)$. In this case $z=x+y \sqrt{ }-D$, with $x, y \in \mathbf{Z}$. Taking norms, we obtain $g^{2}=N\left(z^{2}\right)=\left(x^{2}+D y^{2}\right)^{2}$, hence $g=x^{2}+D y^{2}$. Since $D \nmid a, g<D$. Therefore, $y=0$. But g is square-free, so $g \neq x^{2}$. Therefore, z does not exist.
(ii) $-D \equiv 1(\bmod 4)$. In this case we obtain $g=x^{2}+x y+(1+D) y^{2} / 4$, with $x, y \in \mathbf{Z}$. Since g is square-free, $y \neq 0$. Therefore, $g \geqslant D y^{2} / 4>g y^{2} / 4$, so $y= \pm 1$; we also find that $4 g \geqslant D>g$. Since D is a multiple of g and D is odd, $D=3 g$. Consequently, $g=x^{2} \pm x+(1+3 g) / 4$, which implies $g=(2 x \pm 1)^{2}$, contradiction. Therefore, z does not exist. Q.E.D.

In the cases considered by MacKenzie, Scheuneman, and Fujisaki, $|a|$ is a prime which divides D, so E / F is unramified; in fact, E is contained in the genus field of F. One may ask more generally whether or not E / F has a relative integral basis, where E is any subfield of the genus field of F. It turns out that the above case is an exception and that usually a basis exists.

Theorem. Let $F=\mathbf{Q}(\sqrt{ } d)$ be a quadratic number field with discriminant d, let $\left\{p_{1}, \ldots, p_{n}\right\}$ be a proper subset of the set of odd primes dividing d, and let $E=F\left(\sqrt{ \pm p_{1}}, \ldots, \sqrt{ \pm p_{n}}\right)$, where $\pm p_{i} \equiv 1(\bmod 4)$. If $n \geqslant 2$ then E / F has a relative integral basis.

Proof. Since E / F is unramified (outside ∞), $D_{E / F}=(1)$. To find Δ, consider the vector space basis for E / F consisting of all subproducts of $\prod_{i=1}^{n} \sqrt{ \pm p_{i}}$. In the determinant expression for $\Delta^{1 / 2}$, each column is obtained by fixing a subproduct and multiplying by a column with entries ± 1, corresponding to the action of the Galois group of E / F on the subproduct. We factor out these subproducts from each column and are left with a $2^{n} \times 2^{n}$
 find that $\Delta^{1 / 2}=\left(\prod_{i=1}^{n}\left(\pm p_{i}\right)^{2^{n-2}}\right) \cdot m$, where m is a rational integer. Therefore, $\Delta^{-1} D_{E / F}=\left(\Delta^{-1}\right)$ is the square of a principal ideal of F, so a relative integral basis exists for E / F. Q.E.D.

References

1. E. Artin, Questions de base minimale dans la théorie des nombres algébriques, Colloq. Internat. du Centre National Recherche Scientifique, no. 24, CNRS, Paris, 1950, pp. 19-20; Collected papers of Emil Artin, Addison-Wesley, Reading, Mass., 1965, pp. 229-231. MR 13, 113.
2. G. Fujisaki, Some examples of number fields without relative integral bases, J. Fac. Sci. Univ. Tokyo Sect. IA 21 (1974), 92-95.
3. S. Lang, Algebraic number theory, Addison-Wesley, Reading, Mass., 1970. MR 44 \# 181.
4. R. E. MacKenzie and J. Scheuneman, A number field without a relative integral basis, Amer. Math. Monthly 78 (1971), 882-883. MR 44 \#5292.

[^0]: Received by the editors April 14, 1975.
 AMS (MOS) subject classifications (1970). Primary 12A99; Secondary 12A25, 13B20.
 Key words and phrases. Relative integral bases, quadratic fields.

