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QUASI-UNMIXEDNESS AND INTEGRAL
CLOSURE OF REES RINGS

PETER G. SAWTELLE1

Abstract. For certain Rees rings 91 of a local domain R, the quasi-

unmixedness of R is characterized in terms of a certain transform of 9t being

contained in the integral closure of 9L

1. Introduction. In this paper, a ring shall be a commutative ring with

identity. The terminology is basically that of [2] and [12].

Relations between quasi-unmixedness and integral extensions are well

known (e.g., [1], [5] and [7]). Also, the study of properties of a ring R via

transition to a Rees ring 91 = 9l(R,A) of R (conditions on the ideal A

depending on the particular discussion) has often been useful. In particular,

characterizations of the quasi-unmixedness of R are given in [10] in terms of

localizations of 91 containing R as a quasi-subspace. The 6!^algebra 9" = <í}(u9¿)

(Definition 1) is used in [8] to characterize unmixed local domains. Here,

equivalences to the quasi-unmixedness of R are given in terms of 5" being

contained in the integral closure of 91 (Theorem 2).

2. Preliminary concepts. Let B = (bx,... ,bk)R be an ideal in a Noetherian

ring R. Let / be an indeterminant, and let u = \/t. The Rees ring 91 = 9t(R, B)

of R with respect to B is the ring 9v = R[u,tbx,... ,tbk]. ill is a graded

Noetherian subring of R[u, /]. If (R, M) is a local ring, then 91L = (M, u,

tbx,... ,tbk) is the unique maximal homogeneous ideal of 9L Similar to [12,

Theorem 11, p. 157], 9J is a graded subring of K[u, t], where K is the total

quotient ring of R. (Throughout, 5' will denote the integral closure of ring S.)

For an ideal S in a ring R, the integral closure of B in R, denoted Ba, is the

set of all elements in R satisfying an equation of the form x" + bx x" + • • •

+ bn = 0, where b¡ G B', i = \, ..., n. It is known [4, p. 523] that Ba is an

ideal in R. In particular, if B = bR is a regular principal ideal, then

(bR)a = {/" G R;r/b G R'} = bR' n R [6, Lemma 1].
Definition 1. Let b be a regular nonunit in a ring R. Define 5(bR)

= [ck/bk;ck G (bkR)W, for all large k), where (bkR)W is the set of elements

of R that are in each height one primary component of bk R.

Remark. The following are shown in [11].

(1) ^(bR) is contained in R' if and only if each height one prime divisor of
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bR' contracts to a height one prime (divisor of bR) in R.

(2) bn<5(bR) is a finite intersection of height one primary ideals. Also
bne)(bR) n R = (bnR){x).

(3) Define R}1' = (~]{Ríp\;P is a height one prime divisor of a principal

ideal generated by a nonzero divisor in R), where (P) denotes the set of regular

elements in R - P. Then <5(bR) = R[l/b] D Rw.

3. Characterizations of quasi-unmixed local domains. Several preliminary

results on completions are given to show that the condition {F E 9! is

equivalent to a similar condition for the completion R* of R (Corollary 1).

This is used to give equivalences to the quasi-unmixedness of a local domain

(Theorem 2).

Lemma 1. Let B be an M-primary ideal of a local ring (R, M). Let

9 = 9(R, B). Let p be a prime ideal of 9, with u9 E p. Then (M, u)9, Q p, and

so all prime ideals containing u9 lie over M.

Proof. Since u is in p, B = u9 D R E p n R. But B is A/-primary, so

M E p n R, i.e., M = /» n R.    Q.E.D.

Lemma 2. Let 9 be as in Lemma I and S = 9(R*, BR* ). Let <3H (resp., <D1L')

be the maximal homogeneous ideal of 9 (resp., §), and let 9* (resp., S*) be the

completion of 9 (resp., S) with respect to the ?Jil (resp., ?ftl')-adic topology. Then

9? = S* is the completion (9^)    = (S^ )   of 9^ and S^ .

Proof. 91^ is a dense subspace of S^- [8, Lemma 3.2] and 9* (resp., S*) is

the natural completion of 9^ (resp., S^) [3, Theorem 32, p. 434].   Q.E.D.

Lemma 3. Let R, R*, B, 9 and S be as in Lemma 2. Also, assume that B is

generated by a system of parameters. Let 5" = ?T(w?R.) and 9"* = 5"(mS). Then

N = (M, «)<3Wu)) n 5" (resp., N* = (M* ,w)%a/*,h)) n ^*) is the only prime

divisor of u'ö (resp., u*5*).

Proof. By [8, Remark 3.10(h)], (M, u)9 is the only height one prime divisor

of u9. By the one-to-one correspondence (and denseness) in [8, Lemma 3.2],

(M*,h)S = (M,m)S* is the only height one prime divisor of w§, and by the

one-to-one correspondence in [11, Lemma 2(9)], N (resp., N*) is the only

height one prime divisor of w?T (resp., w5*). By Remark (2), this ideal has no

imbedded prime divisors.    Q.E.D.

Theorem 1. With the notation of Lemma 2, let p E P be an inclusion of prime

ideals in 9 with u E p. Then the following statements hold:

(1) 9/p is a locally unmixed, pseudo-geometric domain [2, p. 131].

(2) p9P is a semiprime, unmixed ideal in the completion 9,* of 9p.

(3) In the completion 9,* of9P, p9* has pure height equal to height p and has

pure depth equal to depth p9P.

(A) p9? = /»S* has pure height equal to height /», where p is contained in the

maximal homogeneous ideal of 9,

Proof. Since/» n R = M (Lemma 1), 9,/p = (/?/M)[w*,(tßf], where X*
denotes X modulo /». Thus 9/p is finitely generated as a ring over the field
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R/M, and so is locally unmixed [2, (34.9)], and pseudo-geometric [2, (36.5)].

This shows (1). By localizing to 9lP, (2) follows from [2, (36.4)] and (1).

For (3), since p9t* is an unmixed ideal (by (2)), it has pure depth equal to

depth p9v* = depth p9lP. Since p9t* is semiprime, that it has pure height

equal to height p follows from [2, (22.9)]. (4) is a special case of (3) since

**,-$?- S* by Lemma 2.    Q.E.D.

Corollary 1. Let the notation be as in Lemma 2. Then <5(u9£) C 9J if and

only if5(uS) G §'.

Proof. Since (u"9l)a = un9¿ n 9, and 9¿ and 9, are graded subrings of

K[u, t], it follows that (u"9\)a is a homogeneous ideal in 9L Therefore, every

prime divisor of (un9l)a, for n > 1, and every prime divisor of the homoge-

neous ideal u9t is contained in the maximal homogeneous ideal <9H of 9L By

[11, Lemma 4(2)], 5^91^) G 91^ if and only if <5(u9l) C 91'. Now, let P be
a height one prime divisor of u9isX, and p = P n 91. Then P9l*% = P9? has

pure height one (Theorem 1(4)). Therefore, by [11, Corollary 2], <ö(u9l<sn)

Q 91'e^ if and only if §(u9l^) G 91*^'. But 91^ = (S^)* so the last inclusion

is equivalent to S^hS^) G (S^)*'- As above, this is equivalent to S^mSs^)

G (Sgu;)', which, again as above, is equivalent to 5(mS) G §'.    Q.E.D.

Lemma 4. Let b be a regular nonunit in a Noetherian ring R and q a minimal

prime divisor of zero in R'. Then there exists a height one prime divisor P of bR'

that contains q.

Proof. In R', let Z = rad (0) =_nf=1c7l (^ = q). Since Z Ç bR' [9,
Lemma 2.4], we may pass to R'/Z = R. R is the direct sum of Krull domains

(B"=xR'/q¡ = ®"=xRe¡, where the e¡ are the associated orthogonal idempo-

tents. A height one prime divisor px of bex in Rex gives rise to the desired P.

Q.E.D.

Theorem 2 (cf. [8, Theorem 5.17]). Let (R, M) be a local domain of altitude

n > 1. Then the following statements are equivalent:

(1) R is quasi-unmixed.

(2) For every finitely generated domain A over R, and for each multiplicatively

closed subset S of A, (AS){X) G As'.
(3) For every ideal B in R, $(u9l) G 9¿, where 91 = 9l(R, B).

(4) There exists an M-primary ideal B in R that is generated by a system of

parameters such that <5(u9() G 9¿, where 9, = 9v(R,B).

Proof. (1 => 2). By [11, Lemma 1(3) and (5)], it is sufficient to show

A^ G A'. By [5, Corollary 2.5], A is locally quasi-unmixed. Then, by [7,

Theorem 3.8], each height one prime ideal in A' contracts to a height one

prime in A. Thus, by [8, Corollary 5.7], Ay' G A'.

(2 =* 3). Since 91 is a finite extension of R, 9ÍX^ G 9¿, by hypothesis. And,

«r(«a) £ 4X).
(3 => 4) is obvious.

(4 => 1). Let B be an M-primary ideal of R generated by a system of

parameters. Let UJ ç 9!, where 91 = 9l(R,B) and 5" = $^91). By Corollary 1,

V* Q §', where S = 9l(R*, BR* ) and 5* = ?T(mS) (R* is the completion of
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R). Let q be a minimal prime divisor of zero in §. Let q' be the minimal prime

divisor of zero in S' that lies over q (S and S' have the same total quotient ring).

By Lemma 4, there exists a height one prime divisor /»' of u%' that contains q'.

By Remark 1, /»' f*1 S = /» is a height one prime divisor of t/S. Hence,

q G p = (M*, u)% (Lemma 3). Since q was an arbitrary minimal prime divisor

of zero in §, R is quasi-unmixed [10, Corollary 9].    Q.E.D.

By combining Theorem 2 and the Remark, further characterizations of the

quasi-unmixedness of R can be obtained.
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