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Abstract. A ring is called left suitable if idempotents can be lifted modulo

every left ideal. These rings include all regular and all semiperfect rings. A

left suitable ring with abelian group of units is commutative if it is either

semiprime or 2-torsion-free. A left suitable ring with zero Jacobson radical

and solvable group of units is commutative if it is 6-torsion-free.

Introduction. Lanski has shown [3] that a (von Neumann) regular ring is

commutative if it is 6-torsion-free and has a solvable group of units. It follows

from [4] that a semiperfect ring with abelian group of units is commutative if

it is either semiprime or 2-torsion-free. The present paper extends these

theorems to a class of "left suitable" rings. These rings are defined in §1 and

the two theorems are proved in §§2 and 3.

Throughout the paper every ring will have an identity. The group of units

and the Jacobson radical of a ring R will be denoted by R* and J(R)

respectively. A ring R is semiperfect if R/J(R) is artinian and idempotents can

be lifted modulo J(R). If R/J(R) is a division ring R will be called local. A ring

R is (von Neumann) regular if given a G R there exists b G R with aba = a.

A ring R is n-torsion-free if na = 0 with a G R implies a = 0. Finally, R is

semiprime if L2 = 0, L a one-sided ideal of R, implies L = 0.

1. Left suitable rings. The notion of lifting idempotents modulo an ideal is

important in ring theory. The requirement that this be possible modulo any

left ideal leads to an interesting class of rings.

1.1. Definition. If L is a left ideal of a ring R we say that idempotents can be

lifted modulo L if, given x G R such that x2 — x G L, there exists e2 = e G R

such that e — x G L. A ring R is called LEFT SUITABLE if idempotents can

be lifted modulo every left ideal of R.
The following characterization of left suitable rings will be referred to

several times.

1.2. Lemma. A ring R is left suitable if and only if for each x G R there exists

e2 = e G Rx such that 1 - e G R(\ - x).

Proof. If R is left suitable and x G R, choose e2 = e such that e — x
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G R(x2 - x). Then e E Rx and \ - e = (\ - x) - (e - x) E R(l - x).

Conversely, if e2 = e G Rx and 1 - e G R(l - x) then e — x = e(l - x)

- (1 - e)x G R(x2 - x).    D

The class of left suitable rings is quite large. In particular, it contains all

regular and all semiperfect rings. Indeed:

1.3. Proposition. If R is a ring such that R/J(R) is regular and idempotents

can be lifted modulo J(R) then R is left suitable.

Proof. Let x E R and choose y G R such that x — xyx G J(R). Then

(yx)2 - yx E J(R), so let f2 = f be such that f - yx E J(R). We may

assume / G Rx since, if u = 1 — f -V yx, then / = u~xfu satisfies f2 = fx

E Rx and f-fx E J(R).
Now x(l -/) G J(R) so that (1 - f)x(\ -/) G J[(\ - f)R(\ -/)].

Hence there exists v E R such that (1 - f)v(\ - f)(\ - x)(\ - f) = 1 -/.

Put g - (1 -/>(1 -/)(1 - x). Theng2 = g G R(\ - x) and, since

g(l-/)=l-/        l-g=f-gfERx.

Hence we are finished by Lemma 1.2 with e = 1 - g.    □

The following example shows that the rings in Proposition 1.3 do not

exhaust the class of left suitable rings.

1.4. Example. Let F denote the rational numbers and let L be the local

subring of all rationals with odd denominators. If

R " {(q\,q2,---,q„,q,q,...)\q¡ E F,q E L,n >  1}

then, with component-wise operations, R is a commutative ring with J(R) = 0

and R is not regular (L is a homomorphic image). However, the fact that F

and L are both left suitable shows easily that the same is true of R.    D

The following property of left suitable rings will be referred to in both the

remaining sections.

1.5. Proposition. Let R be a left suitable ring in which every idempotent is

central. Then every element in R is the sum of a unit and an idempotent.

Proof. Given x E R, let e2 = e = ax and 1 — e = b(l — x) where a, b

E R. We may assume that ea = a so that axa = a and xa is an idempotent.

But then

xa = x(ax)a = xa(ax) = (xa)ax = a(xa)x = ax.

Similarly we may assume b(\ — x)b = b and (1 - x)b = b(\ - x). Since

eb = 0 = (1 - e)a, it follows that x — (1 — e) has inverse (a — b).    D

2. Abelian units. If R is a semiperfect ring and R* is abelian it follows from

[4] that R is commutative if it is either 2-torsion-free or semiprime. In this

section this result is extended to left suitable rings. The following result will be

needed.

2.1. Lemma. Let R be a ring for which R* is abelian. If either R is 2-torsion-

free or R is semiprime then every idempotent in R is central.

Proof. Let e2 = e G R, let r G R and write a = er - ere. It suffices to
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show ¿7 = 0 since an analogous argument shows re = ere. If R is 2-torsion-

free observe that 1 — 2e and 1 — a both lie in R* and so (2e)a = a(2e). This

means 2a = 2(ea) = 2ae = 0 so a = 0. If R is semiprime choose s G R and

write b = se — ese. Then 1 + a and 1 + b lie in R* so ab = ba. Hence

ab = (ea)b = eba = 0. But ba = 0 means s(er — ere) — e(ser) — e(ser)e and

it follows that L = [ex — exe\x G R] is a left ideal of R. Since L2 = 0 it

follows again that a = 0.    D

The commutativity theorem now follows easily.

2.2. Theorem. Let R be a left suitable ring such that R* is abelian. Then R is

commutative if it is either semiprime or 2-torsion-free.

Proof. Lemma 2.1 shows that every idempotent in R is central. The result

then follows from Proposition 1.5.    □

The ring R of upper triangular matrices over GF(2) shows that the theorem

is not true if R is neither semiprime nor 2-torsion-free.

3. Solvable units. It was shown by Lanski [3, Theorem 12] that a 6-torsion-

free regular ring R is commutative provided R* is solvable. This section is

devoted to generalizing this result to left suitable rings. The proof will appeal

to the following result of Lanski [3, Lemma 5], [2, Theorem 9].

3.1. Proposition (Lanski). Let R be a semiprime ring which is 6-torsion-free.

If R* is solvable then every idempotent in R is central.

It is well known that a ring R is local if and only if x G R* or 1 - x G R*

for every x G R. The following represents a weakening of this condition and

will be needed below.

3.2. Proposition. Let R be a ring and suppose G G R* is a group satisfying

the following conditions:

(1) x G R implies x G G or 1 — x G G,

(2) x G G implies —x G G.

Then G = R* and R is local.

Proof. Write A = R - G. It suffices to show that A is an ideal of R.

Lemma. A = {a G R\a + g G G for all g G G).

Proof. Suppose a G A and let g G G be arbitrary. Then a G G so

g~xa G G and consequently 1 — g~xa G G. This means g — a G G and so,

replacing g by —g, it follows that a + g G G. Conversely, if a + g G G for all

g G G and a G A then a contradiction is achieved with g = —a.

Now we can show that A is an ideal. Let a, b G A and let g G G. Then

a — g G G so — a + g G G and consequently b — a + g G G. This shows A

is an additive subgroup. Next, ab + g = a(b + g) + (1 — a)g is in G since

(1 - a)g G G and a(b + g) G G. Hence A is a subring. Finally, if x & A then

x G G and so xa g G and ax & G (since a G G). This completes the proof

of Proposition 3.2.    □

Incidentally, if G G R* satisfies only condition (1) R is local and G has

index 1 or 2 in R*. Indeed, if we denote -G = {-g\g G G}, then the group

Gx = G U (-G) satisfies both conditions (1) and (2).
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3.3. Theorem. Let R be a left suitable ring such that J(R) = 0 and R is 6-

torsion-free. If, in addition, R* is solvable then R is commutative.

Proof. Let P denote a primitive ideal of R. Since J(R) = 0 it suffices to

show that R/P is commutative. If e2 = e E R then eR(l - e) = 0 by

Proposition 3.1 and so, since P is prime, either e E P or (\ — e) E P. Now let

<p: R -» R/P be the natural map and put G = (R*)<p. If xq> E R/P write

x = e + u, e2 = e, u E R*. Since either e G P or (1 — e) E P it follows that

either x<p = u<p E G or 1 — xy = (—w)<p G G. Thus G satisfies the conditions

of Proposition 3.2 and it follows that R/P is local and (R/P)* = (R*)y. Thus
R/P is a division ring (P is primitive) with a solvable group of units and so is

commutative by a result of Hua [1]. This completes the proof.    D

The rings of 2 X 2 matrices over GF(2) and <JF(3) show that the hypothesis

of 6-torsion-free in Theorem 3.3 cannot be weakened to 2-torsion-free or 3-

torsion-free.
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