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L2(GQ\GA) IS NOT ALWAYS
MULTIPLICITY-FREE

LAWRENCE CORWIN1

Abstract.   We show that there are solvable adelic groups GA whose action

on L2(Gq\Ga), Gq\Ga compact, it is not multiplicity-free.

In the course of this work, we shall have to review certain methods for

computing these multiplicities. These methods are described in, e.g., [2] and

[4], but are found (at least implicitly) in various other papers as well.

In the counterexample, we let G he the semidirect product of a (normal)

Abelian group N by an Abelian group K; let T0 = /V n T, A = K n T. T0

will, in fact, be a finite-dimensional vector space over Q, and N will be

T ®q A. Poisson summation says that the action of N on ñ2(T\N) decompos-

es into © erx X) a simple sum of characters. K acts on Ñ by x (■*)

= xik~lxk); let H he the subgroup of K fixing x, and let A0 = H D A.

Lemma 1.   A0\// is compact.

Proof. The orbit of xi under A is a continuous 1-1 image of H\HA. On the

other hand, every element of A acts as an automorphism of T0 and thus takes

r0x to Tq- . Hence, xA £ lîf is discrete, and therefore H\HA is discrete-in

particular, closed in H\K. If A0\// is not compact, then, since A0\/7 s A\HA,

A\//A is not compact in A\A"; hence, HA is not closed in K, and so H\HA is

not closed in H\K. The lemma follows.

According to [5], the irreducible representations of NH lying over Xi are of

the form xi ® $, where \p is an element of H. From this, it is easy to see that

the irreducible representations of NH lying over xi in ^2(^A0\NH) are of the

form Xi®»rV where $, £ A¿ G H. Note also that Q2iTA0\NH)

at £2iTA\NHA), since TAq\NH at TA\NHA; thus A acts on &2iTA0\NH).
Furthermore, if 5 £ A, then the subgroup of K fixing xf is 8~x H8 = H, and

the representations lying above xf in ^(TA^NH) are those of the form

xf ® \pi, t//] £ Aq . The action of 8 on £2iTA0\NH) takes xi ® V'i to the
function

x -» Xi ® t\ix8) = Xi ® ̂ i(á_1x5) = xf ® ip\ix),

since 8 commutes with H and left multiplication by 8 does not change the

value of functions in £2(rA0\A'7/).    Hence it  takes   xi ® f^i   to   xf ® V'i •

Again by [5],  Ind^^c (xi ®«rr) = ^àNH^GilndNH^NHàx\ »fh) i«
irreducible. But from [6], the restriction of XndNH^,NHÍÍ X\ ® ^\ to ^^ ¿s Just
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®8enh\nh£lX\ ® "ri S furthermore, the action of 8 is just to take xSl to xS]S-

(This is explicitly worked out in a slightly more general situation in [5], during

the proof of Theorem 2.) Thus IndNH_>NH& (xi ® ^ ) is a subrepresentation of

the "regular" action of A/77 A on £2(IoA\A/77A). If we induce this representa-

tion to G, we get X; thus Ind^^ç (xi ® u>i ) is a subrepresentation of A. As <p\

runs through Aq" , we get the complete decomposition of the subspace of

e2(r\G)se2(r0\iv)®Ê2(A\i:) given by %Xt 9 £2(A\7C), where %x¡ is
spanned by the functions xf > ° e A. As xi varies over the A-orbits in IgX , we

get the complete decomposition of £2(r\G).
We may summarize this in the following way.

Theorem 1. À = ©x^IndJV// _>G(x ® ¡P), where x ranges over the A-orbits in

r0 and \p ranges over the characters of H (= isotropy subgroup of x in K) trivial

on 77x n r.

(One can also obtain Theorem 1 from the results of [4]; the preceding

account is partly an adaptation of the approach employed there to our

particular situation.)

Corollary. Suppose that x\ and X2 are tw0 elements in Tq- which are in

different A-orbits, but in the same K-orbit. Then X is not multiplicity-free. iMore

precisely, the multiplicity of IndNH^.GX\ ® ¡P & equal to the number of K-orbits

ofYQ- in the A-orbit of x\)

Proof. Suppose that X2 = Xi^- Then 77X2 = y~x Hx¡y = Hx¡ = 77, say, and

if \p G H vanishes on A n 77, then IndNH^Gxi ® ^ ancl ^n^NH->GX2 ® *P

both appear in X. These two representations are, in fact, equivalent, since

Xi ® i/' and X2 ® 4* are 'n tne same G-orbit. Thus À contains a representation

of multiplicity =£ 2.

Thus, we have the example sought at the beginning of this paper if we can

find Xi and X2 as 'n me Corollary. (The action of K is then said to violate the

Hasse principle.) The rest of this paper is devoted to finding an example of this

phenomenon. I am indebted to Professors G. Harder and J. Tits for much of

what follows, and especially for their patience in explaining the rudiments of

algebraic group theory to me.

Let T be an Abelian algebraic group/Q acting on a vector space V; T' will

turn out to be an anisotropic torus. Let v be a point in V, and let T be the

subgroup of elements fixing v. Then T'v = T'/T. Galois cohomology gives us

an exact sequence (where all groups are taken over Q):

2q '-* Tq' -» (T'/T)Q -* HxiT) ^ HxiT').

Suppose that we can find | G 77'(T) such that £ vanishes locally at every

prime (and almost every coboundary is integral), 1^0, and the image of £ in

HxiT') is 0. Then Í comes from an element a G ÍT'/T)q. Moreover, a does

not have a preimage in T; otherwise exactness would imply that £ = 0.

However, if we work over the adeles, £ does vanish, and (because of our

coboundary condition) a has a preimage in TK'. That is, we have a rational

element in (7"/T)A (or, equivalently, a rational element in T'xv, v rational)

which is not the image of a rational element in TA (i.e., not in T'qv). Let
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TA = 7C, TA = H, V = N* — N  , and we have the counterexample.

We still need to find 7" and T; the existence of an appropriate v is then

automatic. (See, e.g., [1, Theorem 5.1 and §5.5].) We let T, T' be the elements

of norm 1 of appropriate algebraic number fields k, k', with k' extending k.

Let U = k x (as an algebraic group/Q); let UL = group of L-rational points

of U, etc. Since 1 -* TL -* UL —> Lx —> 1 (L an algebraic extension of Q) is an

exact sequence of algebraic groups, the usual cohomology exact sequence

implies that

7q-» UQ^-* Qx~* HX(T)-* HX(U) = 0

is exact (A/ = norm map) and, hence, that HX(T) = Qx/N(kx). Similarly,

HX(T') — Qx/N(k'), and it is not hard to check that the inclusion map of T

into T  induces   i* : HX(T) -* HX(T'),  given by   i*(y) = y",    where n =

[k': k]andy G Qx/N(k').

The conditions, then, which suffice to give a counterexample are:

(1) 3 an element^ G Qx which is a local norm of k at every prime, but not

a global norm;

(2) y" is a global norm of k' (where \k' : k] = n).

This is not hard to arrange. For instance, let k = Q(\/l3,\/T7); then [3, p.

360] -1 is a local norm everywhere, but not a global norm. Let k' = k(^/--l),

say. More generally, let k be any Galois extension of Q such that Qx has

elements which are local norms everywhere but not global norms. There are

only a finite number of classes of such elements in HX(T) (see [8, Chapitre 3,

Théorème 7']); let xx, ..., xm be representatives. We know that x"1 is a norm

for some integer nx; say xxl = Nk/Qyx. If kx is an extension of k of degree nx

such that yx G Nk,kkx, then x"x G Nk/qyx, and so (2) is satisfied for xx. By

induction, we may pick k' to kill off all of x,, ..., xm.

Note, incidentally, that 7^/7^ is compact. We need one fact found in [9]:

k x is discrete and cocompact in /cA, the ideles of norm 1 over k (Chapter 4,

Theorem 4). Now we reason as in Lemma 1. The norm map takes kx into the

closed discrete set Qx, and so kxTA/Tx is closed. But if 7^/7^ is not compact,

then Txkx/kx is not compact and, hence, 7A/cx is not closed in /cA. But then

Txkx/T\ is not closed in kxx/Tx, a contradiction.
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