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Abstract. This paper shows by example how different the strong $-

variation can be from the weak i>-variation. Let $ be a convex function on

[0, oo) with i>(0) = 0. A continuous function/on [a, b] is of bounded strong

^-variation if sup 2 *(!/(*,-) _/(*/-i)l) < °°> f°r the partitions of [a,b].

Since inf 2 *(!/(*,) -/(*,-i)l) = 0 if linv^*"1«^*) = 0, the weak *-
variation is defined as inf 2 *(«(/; *,-i,*,)), where a(f;c,d) is the oscilla-

tion of/on [c,d]. Of special interest is the case $(x) = xp, p > 1, in terms

of which strong and weak variation dimensions are defined. They are

denoted by dims(/) and dimw(/), respectively. By a lemma of Goffman and

Loughlin, the Hausdorff dimension d of the graph of / provides a lower

bound for dimw(/): 1/(2 — d) < dimw(/). A Lipschitz condition of order

a provides an upper bound for dims(/): dinv//) < l/a. Besicovitch and

Ursell showed that 1 < d < 2 — a and gave examples to show that d can

take on any value in this interval. It turns out that these examples provide

the extreme cases for variation dimensions; i.e., dimw(/) = 1/(2 — d) and

dims(/) = l/a.

1. Introduction. The purpose of this paper is to show by example how

different the strong variation of a function can be from the weak variation. In

previous work concerning the variation of Brownian motion, the strong and

weak variation dimensions were shown to be equal.

Strong and weak «^-variations were defined by Goffman and Loughlin [2].

If $ is a nonnegative convex function on [0, oo) with <ï>(0) = 0, and/is a real

function on [a, b], the strong «^-variation of / is

W) = sup 2 *(!/(*,•)-/(*,•-,)!),
■a    (=1

where m is any partition a — x0 < • • • < xn = b of [a, b\. As Goffman and

Loughlin pointed out, if lim^o x~ ' $(x) = 0, then, for every continuous /,

inf ¿ *(!/(*,)-/(*,-! )|)«0.
»  i=i

This fact motivates the definition of weak <P-vanation,

Kï,w(/) = inf 2 *(«(/; x^x,.)),
it i=\

where
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co(/;c,c7)=      sup     \f(x)-f(y)\.

Using <fr(x) = xp,p > 1, the O-variations of/will be called the strong p-

variation, Vp&(f), and the weak/^-variation, Kw(f)- Then either Vp%(f) = oo

for allp > 1, Vp&(f) < oo for allp > 1, or there is a unique p > 1 such that

V*(f) = oo for all q < p and Vqs(f) < oo for all ¿7 > p. This yields the

strong variation dimension of/ dims(/), which is oo, 1, andp, respectively, in

the three cases. Similarly, the weak variation dimension of / dimw(/) is

defined according to Vpw(f) > 0 or Vpw(f) = 0.

Note. Goffman and Loughlin defined the weak «^-variation as

lim inf 2 $(<«>(/; x¿_x,x¡)) as the norms of the partitions converge to zero. The

weak ^-variation given here leaves dimw(/) unchanged and was so defined

simply because it more closely parallels the definition of strong variation.

Goffman and Loughlin showed that both the strong and weak variation

dimensions of Brownian motion are two with probability one. At the

suggestion of Professor Goffman I extended the concepts of strong and weak

variation to higher dimensions and showed that with appropriate definitions,

Af-parameter Brownian motion in ¿/-space has strong and weak variation

dimensions 2N with probability one [4], [5]. Taylor [3] found precise functions

$ for measuring the strong and weak «^-variations of Brownian motion.

The Lipschitz condition of a function gives an upper bound for the strong

variation dimension, and the Hausdorff dimension of the graph gives a lower

bound for the weak variation dimension. The examples given here, taken from

Besicovitch and Ursell [1], are the extreme cases; that is, they have the largest

possible strong variation dimension and the smallest possible weak variation

dimension.

2. Preliminary lemmas. It is clear from the definitions that for every function

/, Kw(f) < VJ(f), and therefore

(1) dimw(/) < dims(/).

A function /on [0,1] satisfies a Lipschitz condition of order o (f G Lip ô) if

Mf=sup\f(x)-f(y)\\x-y\-S< oo.
x=£y

The following lemma shows that if / G Lip 8, then

(2) dims(/) < I/o.

Lemma 1. Iff G Lip S, then l(/ä(/) < oo.

Proof. For any partition 0 = x0 < xx < • • • < xn = 1,

2 l/to) -/(*,-.)l1/a < £ W}(Xi - xt_x)S]X/S = Mf.
i=\ 1=1

The following lemma, due to Goffman and Loughlin [2], shows that if the

Hausdorff dimension of the graph of / is d, then

(3) l/(2-rf)<dimw(/).
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Lemma 2. // Vpw(f) = 0, then H2_x/p(grf) = 0. (Here Hk is the Hausdorff k
dimensional measure and gr / is the graph off.)

We note here that Goffman and Loughlin stated the lemma in a different

form, but the different definition of weak O-variation does not affect the

validity of Lemma 2. All that is required for the proof of the lemma is a

sequence of partitions of [a, b], with norms converging to zero, which gives

Vpv'(f). Under the present definition of J£w(/), if lÇ"(f) = 0, we have such

a sequence.

Let

Ef(8,M) = {xE [0,1]: lim sup I/O) - f(y)\ \x - y\~S > m\
K y->x J

Lemma 3. If EÂ8,M) has positive Lebesgue measure for some M > 0, then

dims(/) > 1/5.

Proof. Suppose \Ef(8,M)\ > 0 for some M > 0 and let p < 1/6. It is
sufficient to show Vps(f) = oo. Let e > 0. For each x E E(8,M) there is an

hx < e such that

|/(x)-/(x + AJ|AJs> A//2.

The intervals [x, x + hx ] cover Ej-(8, M) in the sense of Vitali, so there is a

finite disjoint collection {[xj.X) + hx],... ,[xN,xN + hN]} such that

Ef(8,M)~ U [x,,x, +A,]
i=i <\\Eß, M)\.

Now

Vps(f) > 2 |/(x,) -f(Xi + A,))" > 2 *f(y)'

>(f)V1|iA,>(f)>-I|^,M)|,
which goes to oo as e —> 0.

3. The functions of Besicovitch and Ursell. Besicovitch and Ursell [1] showed

that if / G Lip 8, then the Hausdorff dimension d oí the graph of / satisfies

1 < d < 2 — 8, and gave examples which showed that any d in this interval

is possible.

The function / is defined as follows. Let <p(x) = 2xfor0<x<2, and

elsewhere define <p by tp(x) = <p(-x) = <p(x + 1). Define/by

00

f(x) =   2  an<p(bnx)
n=\

where an = b;s and bn+x = b£.

For ¡in, consider three cases.

(i) For 1< d < 2 - 8, p„ = p = (1 - 5)fi-i(2 - d)(d - l)"1.
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(ii) For d = 2 - 8, u„ is chosen so that un —> 1 and bn+x/bn -* oo. (For

example, bx > 1 and ¡in = 1 + n~x'2.)

(iii) For d = 1, u„ is chosen so that bn —* oo and u„ —» oo.

In (i) and (ii) we have

(4) /t„>u = (l-5)r1(2-c7)(c7-ir1.

In (iii) we may assume

(5) H >(1 - 0)5-'(2 - «0(4, - O"',   where </„ -* 1.

In all three cases b, may be chosen so that

(6) bn+x > Bbn,   where B > 1.

Lemma 4. For f/ie function f constructed above, there is an M > 0 such that

Ef(8,M) = [0,1].

Proof. For any x G [0,1],

A/ = /(* + h) -f(x) = 2 an[<p(6nx + b„h) - <p(6„x)].

Let

Then

■s„ =   2 a„[cp(bnx + bnh) - <p(b„x)]

and

£ -  2 a« [<p(o„x + M) - ?<*,,*)]•

k],<  2 sl<p(6„* + o„/,) - ç#„x)| <  2 an = 2 iV5

<o;+Ä,[i + 7i-5 + 7i-25+ •■■].

We have

(7) M < ÍCfi/d - JT«) < &;S7i-V(l - 7T«).

Since |<r/| = 2 we have

<p(bnx + b„h) - m(o„x) = ±2bnh   if o„A < x2.

So

(8) *, « 2  ±2bx„-sh.
n<p

Suppose the last term in this sum is positive. Then



FUNCTIONS WITH STRONG AND WEAK «^-VARIATIONS 215

i, > 2h[-b\-s-Ajlf + bxv~s]

> 2hbx-s{-B^-x^s-^ - &4HMÍ-*(«-» + 1]

>2A^-4l-  2  Z^1)"]

= 2A^"6[2 - (1 - Bs~x)-1].

If the last term in (8) is negative, we would have sy less than the negative of

the last expression above. In any case \s„\ > 2hbl~s[2 - (1 — Bs~x)~ ].

Combining this with (7) and letting h„ = (2b„)~l, we have

|A/| > \s,\ - \rv\ > 25[2 - (1 - A*"1)-1 - B~s(\ - B'6)'']^.

The expression in brackets is positive if B is sufficiently large. This is

accomplished by choosing bx large. Since A„ is arbitrarily small, the lemma is

proved.

Lemmas 3 and 4 and relation (2) yield the following.

Theorem 1. For the function / dims(/) = 1/5.

Lemma 5. For the function f. \C(f) = Ofor every p > 1/(2 - d).
Proof. From (8),

kl< 2 2b\-sh

< 2hb\-\\ + Bs~x + 52(5-') + • • • + ¿?(»-iX«-D]

< Kxhbx~s.

Combining this with (7) yields

(9) |A/I< W + |«|< Kx hbl~s + K2b;*x.

Similarly we obtain

(10) <o(/; x, x + A) < tf, hb\~s + K2 b;*x

by applying (9) to the interval whose endpoints are where / attains its

maximum and minimum in [x, x + A].

Now let A„ = bf~lb~+x. Partitioning [0,1] into intervals of length h„, the

estimate of If/ft-,/)(/) is (for cases (i) and (ii))

KxUf;x,x + A,)]'/<2-«> < h;x[Kxbl-sh, + K2b;°x]W-ä)

<K3bl-sb^«W-dUK3.

Nowifp> 1/(2 - d),

V/(f)   < A;'[w(/;x,x + hp)Y  < K3[u(/;x,x + A,)]^1^2-^,

which converges to zero as A„ goes to zero. For case (iii) repeat the above
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argument replacing d by dn. Then if p > 1, p > 1/(2 - dn) for some n, and we

again obtain J£w(/) = 0.

Lemma 5 and relation (3) yield the following.

Theorem 2. For the function f dimw(/) = 1/(2 - d).

Note that as ¿/varies from 1 to 2 — 8, dimw(/) varies from 1 to 1/5. In view

of relations (2) and (3), Theorems 1 and 2 show that / has the largest possible

strong variation dimension and the smallest possible weak variation dimen-

sion.
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