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THE EXISTENCE OF CONJUGATE POINTS
FOR SELFADJOINT DIFFERENTIAL

EQUATIONS OF EVEN ORDER1

ROGER T. LEWIS

Abstract.   This paper presents sufficient conditions on the coefficents of

h»y - 22=o (-l)"~k(.Pkyia~k)fn~k) wnich insu« that L^y = 0 has con-

jugate points Tj(a) for all a > 0. The main theorem implies that (— l)"/2"'

+ py = 0 has conjugate points tj(<j) for all a > 0 when/00 xap(x)dx = -oo

for some a < 2/i — 1 with no sign restrictions on p(x).

We shall devote our attention to the selfadjoint, linear differential equation

L2ny = 0 where

(O L2ny= 2 (-\rk(Pky{n'k)){n~k)     (7>oM>0).
k = 0

The coefficientspk(x) are assumed to have continuous « — k derivatives for all

x > 0.

Many authors have studied the behavior of the solutions to L2ny = 0 with

attention given to the zeros of solutions and their derivatives. A book by

Swanson [16] and a paper by Barrett [2] have good organizations of the results

of various authors for L2, L4, and third order linear differential equations. For

studies of the behavior of the more general L2n from a somewhat different

perspective, the Lecture Notes of Coppel [4] or Kreith [8] can be consulted. In

particular, many results have been primarily motivated by the well-known

paper of Leighton and Nehari [9] which considers L4. For theorems directly

related to the one obtained here, although with different emphases, the reader

should also see Bradley [3], Glazman [5, pp. 95-106], Hinton [7], Lewis [10],

[11], and Ridenhour [15].

Given a real number a, if there is a number b > a such that L2ny = 0 has

a nontrivial solution satisfying

y(')(a) = 0 = /'Hb)       (0<i<n-l),

then b is called a conjugate point of a and the least such b is denoted by 77(a).

By examining L2n for the existence or nonexistence of t\(a) for all a > 0 we

are also examining criteria for the set of points of the negative part of the
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spectrum of certain selfadjoint extensions L2n of L2n to be infinite or finite,

respectively (see Glazman [5, pp. 40,95,96]). Also, the existence or nonexis-

tence of r¡(a) for all a > 0 is sometimes refered to as the oscillation or

nonoscillation of L2n, respectively.

Given n and a > 0 we define the set of admissible functions &n (b) for all

b > a to be the set of all real-valued functions y satisfying the following

properties:

(i) y(k> is absolutely continuous on [a, b] for k = 0, 1, ..., n — 1,

(ii) /"' is essentially bounded on [a, b], and

(iii) y(k\a) = 0 = y{k\b) for k = 0, 1, ...,«- 1.

For all _y G &„(b) we define the quadratic functional for L2n by

*b
i(y)=S   2 Pk(x)\/"-k\x)\2dx.

Ja   k=0

The primary tool used in this paper is Theorem 1 which is a corollary to a

theorem of Reid [13]. However, the result has been known and applied in

various ways for many years. For example, it is inherent in the Courant-Weyl

minimax principles as well as the classical treatment of the Rayleigh quotients.

Theorem 1.    Given a number a > 0, the following statements are equivalent:

(i) There is no conjugate point r¡(a) with respect to L2ny = 0.

(ii) For allb> a and y G &„(b), I(y) > 0 when y ^é 0.

The next theorem is the principal result of this paper.

Theorem 2.   If

/CO
xap„(x)dx = -oo

for some number a, and

(3) f°° xa-2(n-V\pk(x)\dx < oo

for 0 < k < n - 1, then L2ny = 0 has conjugate points r¡(a) for all a > 0.

Proof. By Theorem 1 it will suffice to find an admissible function y for

each a > 0 such that I(y) < 0.

Let <p(x) be the 2n — 1 degree polynomial satisfying

$<0(0) = $(0(1) = 4,(1) = 0       (1 </<«- 1)

and <f>(0) = 1. For a given a > 0 we define y(x) as follows:

y(x) = xa/2<t>((2a - x)/a),       x G [a, 2a),

,W - **», , e [2»,«.

y(x) = xal2<p((x - b)/b), x G [b,2b),

and y(x) = 0 otherwise. Clearly, y(x) is admissible.

There is a number M, independent of b, such that
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\y{n~k)(x)\2 < Mxa-2^-k^

for 0 < k < « and all x where yx-"~k>(x) exist. Consequently,

n~ '   r 2b

2   f    Pk(x)\/"-kî\2dx
k=0Ja

is bounded, independent of b, because of (3).

By (2) there is a number ß such that / > ß implies that

n-l

2 f2bPk(x)\y("-k)(x)\2dx +f2aPn(x)\y(x)\2dx
k = 0Ja Ja

+ {' xap„(x)dx<0.
Jla

Q(t) = /' xaPn(x)dx

Define

and let b be the largest zero of Q(t) on [ß, oo). By integrating by parts, we

obtain the equality

r lb i r 2b

]b   Pn(x)\y(x)\2dx = -(2/6) JT    Q(x)<t>((x - b)/b)$'((x - b)/b)dx

sincey(x) = xa/2<i>((x - b)/b) on (b,2b) and Q(b) = 0 = <t>(l). By noting that

<i>(x) = C f^ [t(t - \)}"-1 dt

where <i>(0) = 1 implies that

C-' = -/0 [t(t-\)rxdt,

it is easy to show that <j>(x) > 0 and <f>'(x) < 0 on [0,1]. Therefore, since

Q(x) < 0 on (è, oo), we know by the above equality that

•2b
I    Pn(x)\y(x)\2dx<0.

Jb

This implies that 7( v) < 0 and the proof is complete.

Corollary to Theorem 2. If for some a < 2« - 1

/oo xap(x)dx = -oo

i«e« (- l)"y(2n> + py = 0 has a conjugate point 71(a) for all a > 0.

The bound on a is sharp. This follows from the well-known fact that the

Euler equation (-l)"v'2"' + cx~2ny = 0 does not have conjugate points 77(a)

for all a > 0 when c > -a2 where

_ 1 • 3 • 5 •••(2« - 1)
n 2"
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If c < —a2, then the Euler equation does have conjugate points rj(a) for all

a > 0 (see Glazman [4, pp. 96,97]). Without sign restrictions on p(x),

significant refinement of the above corollary is not expected. With sign

restrictions on p(x), refinement can be obtained as in the results of Hille [6]

and Glazman [5, p. 100].

Theorem 4.2 of Reid [14, p.  105] shows that (-l)"y{2n) + py = 0 has

conjugate points -q(a) for all a > 0 when p(x) < 0 and

/
t2"-2p(t)dt = -oo.

The above corollary removes the sign restriction on p(x) and, also improves

the result when p(x) is known to be negative.

Moore [12] proved a theorem which has the above corollary when n = 1.

His theorem is a generalization of Leigh ton's well-known result: the equation

L2y = 0 is oscillatory when

/OO 1 /-00(p0(x))    dx = - J    px(x)dx = oo.

Using Theorem 1, Leighton and Nehari [9] proved Theorem 2 for the special

case n = 2 with the added restrictions thatpx(x) andp2(x) be negative.

In order to further examine the sharpness of Theorem 2, the next theorem,

whose proof can be found in [10], and its corollary is presented.

For L2n defined in (1) let Pk(x) = pk(x) and for m > 1 define

pkm(x) = ^ pr\t)dt

when Pk~x is integrable. Also, for each k > 1 we define

Mk = k\ 24k~x/(2k)\.

Theorem 3.    Suppose that for k = 1, ..., n and m = 0, \, ..., k — 1

-oo < Ja   Pk(t)dt < oo.

If xk\Pk(x)\ < 8k and 2£=t "^ A/¿. = 1 for all x > a, then L2ny = 0 does not

have a conjugate point v)(a).

The following corollary provides an interesting comparison to the results in

Theorem 2 and its corollary when a = 2« — 1.

Corollary to Theorem 3. Ifp0(x) = 1 and for k = 1, ..., n

x2k-x\Pk(x)\dx < oo,

then L2ny = 0 does not have a conjugate point 17(a) for some a > c.

Theorem 3 and its corollary are related to Ahlbrandt's [l, p. 293] Theorem

6.1. When/>0 = 1 and sign conditions are added the above result is stronger.

Theorem 2 creates a question as to whether a condition similar to (2) being

satisfied by one of the middle terms of L2n might also yield the same results.

The next theorem partially answers this question when an additional sign-type

£
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restriction is permitted on the middle term.

We define f~(x) = f(x) when/(x) < 0 and zero otherwise. The function

f+(x) is defined similarly.

Theorem 4.    Suppose that for some a

roo

/

r

x«-2("-l<)p+(x)dx <  oo

for k = 0, 1, ..., «. If for some 0 < m < n

x<*-2(»-»>)p-(x)dx = -oo,

then L2ny = 0 has a conjugate point 77(a) for all a > 0.

Theorem 4 is easy to prove using Theorem 1 and the admissible function

y(x) defined in the proof of Theorem 2 except with a different choice of b.
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